Skip to main content

Advertisement

Log in

Impact of Breath Holding on Cardiovascular Respiratory and Cerebrovascular Health

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Human underwater breath-hold diving is a fascinating example of applied environmental physiology. In combination with swimming, it is one of the most popular forms of summer outdoor physical activities. It is performed by a variety of individuals ranging from elite breath-hold divers, underwater hockey and rugby players, synchronized and sprint swimmers, spear fishermen, sponge harvesters and up to recreational swimmers. Very few data currently exist concerning the influence of regular breath holding on possible health risks such as cerebrovascular, cardiovascular and respiratory diseases. A literature search of the PubMed electronic search engine using keywords ‘breath-hold diving’ and ‘apnoea diving’ was performed. This review focuses on recent advances in knowledge regarding possibly harmful physiological changes and/or potential health risks associated with breath-hold diving. Available evidence indicates that deep breath-hold dives can be very dangerous and can cause serious acute health problems such a collapse of the lungs, barotrauma at descent and ascent, pulmonary oedema and alveolar haemorrhage, cardiac arrest, blackouts, nitrogen narcosis, decompression sickness and death. Moreover, even shallow apnoea dives, which are far more frequent, can present a significant health risk. The state of affairs is disturbing as athletes, as well as recreational individuals, practice voluntary apnoea on a regular basis. Long-term health risks of frequent maximal breath holds are at present unknown, but should be addressed in future research. Clearly, further studies are needed to better understand the mechanisms related to the possible development or worsening of different clinical disorders in recreational or competitive breath holding and to determine the potential changes in training/competition regimens in order to prevent these adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muth CM, Radermacher P, Pittner A, et al. Arterial blood gases during diving in elite apnea divers. Int J Sports Med 2003; 24: 104–7

    Article  PubMed  CAS  Google Scholar 

  2. Lindholm P, Lundgren CE. Alveolar gas composition before and after maximal breath-holds in competitive divers. Undersea Hyperb Med 2006; 33: 463–7

    PubMed  CAS  Google Scholar 

  3. Ferretti G, Costa M, Ferrigno M, et al. Alveolar gas composition and exchange during deep breath-hold diving and dry breath holds in elite divers. J Appl Physiol 1991; 70: 794–802

    PubMed  CAS  Google Scholar 

  4. Liner MH, Ferrigno M, Lundgren CE. Alveolar gas exchange during simulated breath-hold diving to 20 m. Undersea Hyperb Med 1993; 20: 27–38

    PubMed  CAS  Google Scholar 

  5. Fagius J, Sundlof G. The diving response in man: effects on sympathetic activity in muscle and skin nerve fascicles. J Physiol 1986; 377: 429–43

    PubMed  CAS  Google Scholar 

  6. Bakovic D, Valic Z, Eterovic D, et al. Spleen volume and blood flow response to repeated breath-hold apneas. J Appl Physiol 2003; 95: 1460–6

    PubMed  Google Scholar 

  7. Schagatay E, Andersson JP, Hallen M, et al. Selected contribution: role of spleen emptying in prolonging apneas in humans. J Appl Physiol 2001; 90: 1623–9

    PubMed  CAS  Google Scholar 

  8. Palada I, Eterovic D, Obad A, et al. Spleen and cardiovascular function during short apneas in divers. J Appl Physiol 2007; 103: 1958–63

    Article  PubMed  Google Scholar 

  9. Dempsey JA, Veasey SC, Morgan BJ, et al. Pathophysiology of sleep apnea. Physiol Rev 2010; 90: 47–112

    Article  PubMed  CAS  Google Scholar 

  10. Lindholm P, Lundgren CE. The physiology and pathophysiology of human breath-hold diving. J Appl Physiol 2009; 106: 284–92

    Article  PubMed  Google Scholar 

  11. Ferrigno M, Lundgren CE. Breath-hold diving. In: Brubakk AO, Neuman TS, editors. Bennett and Elliott’s physiology and medicine of diving. 5th ed. Edinburgh: Saunders, 2003: 153–80

    Google Scholar 

  12. Lin YC, Hong SK. Hyperbaria: breath-hold diving. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology: environmental physiology. Bethesda (MD): Am Physiol Soc, 1996: 979–95

    Google Scholar 

  13. Muth CM, Ehrmann U, Radermacher P. Physiological and clinical aspects of apnea diving. Clin Chest Med 2005; 26: 381–94

    Article  PubMed  Google Scholar 

  14. Lindholm P, Nyren S. Studies on inspiratory and expiratory glossopharyngeal breathing in breath-hold divers employing magnetic resonance imaging and spirometry. Eur J Appl Physiol 2005; 94: 646–51

    Article  PubMed  Google Scholar 

  15. Novalija J, Lindholm P, Loring SH, et al. Cardiovascular aspects of glossopharyngeal insufflation and exsufflation. Undersea Hyperb Med 2007; 34: 415–23

    PubMed  CAS  Google Scholar 

  16. Ferrigno M, Hickey DD, Liner MH, et al. Cardiac performance in humans during breath holding. J Appl Physiol 1986; 60: 1871–7

    PubMed  CAS  Google Scholar 

  17. Potkin R, Cheng V, Siegel R. Effects of glossopharyngeal insufflation on cardiac function: an echocardiographic study in elite breath-hold divers. J Appl Physiol 2007; 103: 823–7

    Article  PubMed  Google Scholar 

  18. Batinic T, Utz W, Breskovic T, et al. Cardiac magnetic resonance imaging during pulmonary hyperinflation in apnea divers. Med Sci Sports Exerc 2011; 43: 2095–101

    Article  PubMed  Google Scholar 

  19. Eichinger M, Walterspacher S, Scholz T, et al. Glossopharyngeal insufflation and pulmonary hemodynamics in elite breath hold divers. Med Sci Sports Exerc 2010; 42: 1688–95

    Article  PubMed  Google Scholar 

  20. Marabotti C, Scalzini A, Cialoni D, et al. Cardiac changes induced by immersion and breath-hold diving in humans. J Appl Physiol 2009; 106: 293–7

    Article  PubMed  Google Scholar 

  21. Palada I, Bakovic D, Valic Z, et al. Restoration of hemodynamics in apnea struggle phase in association with involuntary breathing movements. Respir Physiol Neurobiol 2008; 161: 174–81

    Article  PubMed  Google Scholar 

  22. Palada I, Obad A, Bakovic D, et al. Cerebral and peripheral hemodynamics and oxygenation during maximal dry breath-holds. Respir Physiol Neurobiol 2007; 157: 374–81

    Article  PubMed  Google Scholar 

  23. Liner MH, Andersson JP. Pulmonary edema after competitive breath-hold diving. J Appl Physiol 2008; 104: 986–90

    Article  PubMed  Google Scholar 

  24. Arborelius Jr M, Ballidin UI, Lilja B, et al. Hemodynamic changes in man during immersion with the head above water. Aerosp Med 1972; 43: 592–8

    PubMed  Google Scholar 

  25. Lindholm P, Ekborn A, Oberg D, et al. Pulmonary edema and hemoptysis after breath-hold diving at residual volume. J Appl Physiol 2008; 104: 912–7

    Article  PubMed  Google Scholar 

  26. Loring SH, O’Donnell CR, Butler JP, et al. Transpulmonary pressures and lung mechanics with glossopharyngeal insufflation and exsufflation beyond normal lung volumes in competitive breath-hold divers. J Appl Physiol 2007; 102: 841–6

    Article  PubMed  Google Scholar 

  27. Walterspacher S, Scholz T, Tetzlaff K, et al. Breath-hold diving: respiratory function on the longer term. Med Sci Sports Exerc 2011; 43: 1214–9

    Article  PubMed  Google Scholar 

  28. Caples SM, Garcia-Touchard A, Somers VK. Sleepdisordered breathing and cardiovascular risk. Sleep 2007; 30: 291–303

    PubMed  Google Scholar 

  29. Peker Y, Hedner J, Kraiczi H, et al. Respiratory disturbance index: an independent predictor of mortality in coronary artery disease. Am J Respir Crit Care Med 2000; 162: 81–6

    Article  PubMed  CAS  Google Scholar 

  30. Peker Y, Hedner J, Norum J, et al. Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up. Am J Respir Crit Care Med 2002; 166: 159–65

    Article  PubMed  Google Scholar 

  31. Cutler MJ, Swift NM, Keller DM, et al. Hypoxia-mediated prolonged elevation of sympathetic nerve activity after periods of intermittent hypoxic apnea. J Appl Physiol 2004; 96: 754–61

    Article  PubMed  Google Scholar 

  32. Leuenberger UA, Brubaker D, Quraishi S, et al. Effects of intermittent hypoxia on sympathetic activity and blood pressure in humans. Auton Neurosci 2005; 121: 87–93

    Article  PubMed  Google Scholar 

  33. Morgan BJ, Crabtree DC, Palta M, et al. Combined hypoxia and hypercapnia evokes long-lasting sympathetic activation in humans. J Appl Physiol 1995; 79: 205–13

    PubMed  CAS  Google Scholar 

  34. Ivancev V, Palada I, Valic Z, et al. Cerebrovascular reactivity to hypercapnia is unimpaired in breath-hold divers. J Physiol 2007; 582: 723–30

    Article  PubMed  CAS  Google Scholar 

  35. Ivancev V, Bakovic D, Obad A, et al. Effects of indomethacin on cerebrovascular response to hypercapnea and hypocapnea in breath-hold diving and obstructive sleep apnea. Respir Physiol Neurobiol 2009; 166: 152–8

    Article  PubMed  CAS  Google Scholar 

  36. Loeppky JA, Miranda FG, Eldridge MW. Abnormal cerebrovascular responses to CO2 in sleep apnea patients. Sleep 1984; 7: 97–109

    PubMed  CAS  Google Scholar 

  37. Placidi F, Diomedi M, Cupini LM, et al. Impairment of daytime cerebrovascular reactivity in patients with obstructive sleep apnoea syndrome. J Sleep Res 1998; 7: 288–92

    Article  PubMed  CAS  Google Scholar 

  38. Dujic Z, Ivancev V, Heusser K, et al. Central chemoreflex sensitivity and sympathetic neural outflow in elite breath-hold divers. J Appl Physiol 2008; 104: 205–11

    Article  PubMed  Google Scholar 

  39. Narkiewicz K, van de Borne PJ, Pesek CA, et al. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation 1999; 99: 1183–9

    Article  PubMed  CAS  Google Scholar 

  40. Breskovic T, Valic Z, Lipp A, et al. Peripheral chemoreflex regulation of sympathetic vasomotor tone in apnea divers. Clin Auton Res 2010; 20: 57–63

    Article  PubMed  Google Scholar 

  41. Breskovic T, Ivancev V, Banic I, et al. Peripheral chemoreflex sensitivity and sympathetic nerve activity are normal in apnea divers during training season. Auton Neurosci 2010; 154: 42–7

    Article  PubMed  Google Scholar 

  42. Narkiewicz K, Pesek CA, Kato M, et al. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension 1998; 32: 1039–43

    Article  PubMed  CAS  Google Scholar 

  43. Steinback CD, Breskovic T, Banic I, et al. Autonomic and cardiovascular responses to chemoreflex stress in apnoea divers. Auton Neurosci 2010; 156: 138–43

    Article  PubMed  Google Scholar 

  44. Pan AW, He J, Kinouchi Y, et al. Blood flow in the carotid artery during breath-holding in relation to diving bradycardia. Eur J Appl Physiol Occup Physiol 1997; 75: 388–95

    Article  PubMed  CAS  Google Scholar 

  45. Przybylowski T, Bangash MF, Reichmuth K, et al. Mechanisms of the cerebrovascular response to apnoea in humans. J Physiol 2003; 548: 323–32

    PubMed  CAS  Google Scholar 

  46. Andersson J, Schagatay E. Effects of lung volume and involuntary breathing movements on the human diving response. Eur J Appl Physiol Occup Physiol 1998; 77: 19–24

    Article  PubMed  CAS  Google Scholar 

  47. Vantanajal JS, Ashmead JC, Anderson TJ, et al. Differential sensitivities of cerebral and brachial blood flow to hypercapnia in humans. J Appl Physiol 2007; 102: 87–93

    Article  PubMed  Google Scholar 

  48. Ainslie PN, Barach A, Murrell C, et al. Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Am J Physiol Heart Circ Physiol 2007; 292: H976–83

    Article  PubMed  CAS  Google Scholar 

  49. Joulia F, Lemaitre F, Fontanari P, et al. Circulatory effects of apnoea in elite breath-hold divers. Acta Physiol (Oxf) 2009; 197: 75–82

    Article  CAS  Google Scholar 

  50. Lin YC. Breath-hold diving in terrestrial mammals. Exerc Sport Sci Rev 1982; 10: 270–307

    Article  PubMed  CAS  Google Scholar 

  51. Dejours P. Hazards of hypoxia during diving. In: Rahn H, editor. Physiology of breath-hold diving and the Ama of Japan papers. Washington, DC: National Academy of Sciences, National Research Council, 1965; 183–93

    Google Scholar 

  52. Dujic Z, Uglesic L, Breskovic T, et al. Involuntary breathing movements improve cerebral oxygenation during apnea struggle phase in elite divers. J Appl Physiol 2009; 107: 1840–6

    Article  PubMed  Google Scholar 

  53. Andersson JP, Liner MH, Jonsson H. Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations. J Appl Physiol 2009; 107: 809–15

    Article  PubMed  Google Scholar 

  54. Ferrigno M, Ferretti G, Ellis A, et al. Cardiovascular changes during deep breath-hold dives in a pressure chamber. J Appl Physiol 1997; 83: 1282–90

    PubMed  CAS  Google Scholar 

  55. Breskovic T, Uglesic L, Zubin P, et al. Cardiovascular changes during underwater static and dynamic breath-hold dives in trained divers. J Appl Physiol 2011; 111: 673–8

    Article  PubMed  Google Scholar 

  56. Perini R, Gheza A, Moia C, et al. Cardiovascular time courses during prolonged immersed static apnoea. Eur J Appl Physiol 2010; 110: 277–83

    Article  PubMed  Google Scholar 

  57. Sieber A, L’abbate A, Passera M, et al. Underwater study of arterial blood pressure in breath-hold divers. J Appl Physiol 2009; 107: 1526–31

    Article  PubMed  Google Scholar 

  58. Ferrigno M, Lundgren CE. High blood pressure during breath-hold diving is not a physiological absurdity [letter]. J Appl Physiol 2010; 109: 1567

    Article  PubMed  Google Scholar 

  59. Bloomfield SM, McKinney J, Smith L, et al. Reliability of S100B in predicting severity of central nervous system injury. Neurocrit Care 2007; 6: 121–38

    Article  PubMed  CAS  Google Scholar 

  60. Kohshi K, Katoh T, Abe H, et al. Neurological accidents caused by repetitive breath-hold dives: two case reports. J Neurol Sci 2000; 178: 66–9

    Article  PubMed  CAS  Google Scholar 

  61. Potkin R, Uszler JM. Brain function imaging in asymptomatic elite breath-hold divers. In: Lindholm P, Pollock NW, Lundgren CE, editors. Breath-hold diving. Proceedings of the Undersea and Hyperbaric Medical Society/Divers Alert Network 2006 Jun 20–21 Workshop. Durham (NC): Divers Alert Network, 2006; 135–7

    Google Scholar 

  62. Overgaard K, Friis S, Pedersen RB, et al. Influence of lung volume, glossopharyngeal inhalation and P(ET) O2 and P(ET) CO2 on apnea performance in trained breath-hold divers. Eur J Appl Physiol 2006; 97: 158–64

    Article  PubMed  Google Scholar 

  63. Lindholm P. Loss of motor control and/or loss of consciousness during breath-hold competitions. Int J Sports Med 2007; 28: 295–9

    Article  PubMed  CAS  Google Scholar 

  64. Dzamonja G, Tank J, Heusser K, et al. Glossopharyngeal insufflation induces cardioinhibitory syncope in apnea divers. Clin Auton Res 2010; 20: 381–4

    Article  PubMed  Google Scholar 

  65. Dujic Z, Breskovic T, Ljubkovic M. Breath hold diving: in vivo model of the brain survival response in man? Med Hypotheses 2011; 76: 737–40

    Article  PubMed  Google Scholar 

  66. Fitz-Clarke JR. Risk of decompression sickness in extreme human breath-hold diving. Undersea Hyperb Med 2009; 36: 83–91

    PubMed  CAS  Google Scholar 

  67. Schipke JD, Gams E, Kallweit O. Decompression sickness following breath-hold diving. Res Sports Med 2006; 14: 163–78

    Article  PubMed  CAS  Google Scholar 

  68. Lanphier EH. Application of decompression tables to repeated breath-hold dives. In: Rahn H, Yokoyama T, editors. Physiology of breath-hold diving and the Ama of Japan. Washington, DC: Publication 1341, National Academy of Sciences, National Research Council, 1965: 227–36

    Google Scholar 

  69. Spencer MP, Okino H. Venous gas emboli following repeated breathhold dives [abstract]. Fed Proc 1972; 31: A355

    Google Scholar 

  70. Nashimoto I. Intravascular bubbles following repeated breath-hold dives [letter]. Jpn J Hyg 1976; 31: 439

    Google Scholar 

  71. Boussuges A, Abdellaouil S, Gardette B, et al. Detection of circulating bubbles in breath-hold divers. Proceedings of the 12th International Congress on Hyperbaric Medicine; 1996 Sep 4–8; Milan. Flagstaff (AZ): Best Publishing Company, 1998; 606–8

    Google Scholar 

  72. Lovering AT, Stickland MK, Amann M, et al. Hyperoxia prevents exercise-induced intrapulmonary arteriovenous shunt in healthy humans. J Physiol 2008; 586: 4559–65

    Article  PubMed  CAS  Google Scholar 

  73. Divers Alert Network. Breath-hold diving. In: DAN Report on Decompression Illness, Diving Fatalities and Project Dive Exploration: 2005 Edition. Durham (NC): Divers Alert Network, 2005: 91–8 [online]. Available from URL: http://www.diversalertnetwork.org/medical/report/2005DCIReport.pdf [Accessed 2011 Nov 2]

    Google Scholar 

  74. Pollock NW. Breath-hold incidents. In: Divers Alert Network. Annual Diving Report. 2008 ed. Durham (NC): Divers Alert Network, 2008; 73–84 [online]. Available from URL: http://www.diversalertnetwork.org/medical/report/2008DANDivingReport.pdf [Accessed 2011 Nov 2]

    Google Scholar 

  75. Craig Jr AB. Summary of 58 cases of loss of consciousness during underwater swimming and diving. Med Sci Sports 1976; 8: 171–5

    Article  PubMed  Google Scholar 

  76. Definis-Gojanovic M, Breskovic T, Sutlovic D, et al. Divers’ deaths in Split-Dalmatian County, Croatia (cases study, 1994–2004). Int Marit Health 2007; 58: 139–48

    PubMed  Google Scholar 

  77. Landsberg PG. Hyperventilation: an unpredictable danger to the sports diver. In: Lundgren CE, Ferrigno M, editors. The physiology of breath-hold diving. Bethesda (MD): Undersea and Hyperbaric Medical Society, 1987: 256–67

    Google Scholar 

Download references

Acknowledgements

We wish to thank Jasna Marinovic, MD, PhD and Dennis J. Madden, MSc for their editing of the manuscript. No sources of funding were used for the preparation of this review. The authors have no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeljko Dujic MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dujic, Z., Breskovic, T. Impact of Breath Holding on Cardiovascular Respiratory and Cerebrovascular Health. Sports Med 42, 459–472 (2012). https://doi.org/10.2165/11599260-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11599260-000000000-00000

Keywords

Navigation