Skip to main content
Log in

Pharmacokinetic Optimization of Immunosuppressive Therapy in Thoracic Transplantation: Part II

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Part I of this article, which appeared in the previous issue of the Journal, reviewed calcineurin inhibitors —ciclosporin and tacrolimus. In part II, we review the pharmacokinetics and therapeutic drug monitoring of mycophenolate and mammalian target of rapamycin inhibitors — sirolimus and everolimus — in thoracic transplantation, and we provide an overall discussion and suggest various areas for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 2007; 46(1): 13–58

    Article  PubMed  CAS  Google Scholar 

  2. Ensom MH, Partovi N, Decarie D, et al. Pharmacokinetics and protein binding of mycophenolic acid in stable lung transplant recipients. Ther Drug Monit 2002 Apr; 24(2): 310–4

    Article  PubMed  CAS  Google Scholar 

  3. van Gelder T, Le Meur Y, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit 2006 Apr; 28(2): 145–54

    Article  PubMed  CAS  Google Scholar 

  4. Baraldo M, Isola M, Feruglio MT, et al. Therapeutic mycophenolic acid monitoring by means of limited sampling strategy in orthotopic heart transplant patients. Transplant Proc 2005 Jun; 37(5): 2240–3

    Article  PubMed  CAS  Google Scholar 

  5. Armstrong VW, Tenderich G, Shipkova M, et al. Pharmacokinetics and bioavailability of mycophenolic acid after intravenous administration and oral administration of mycophenolate mofetil to heart transplant recipients. Ther Drug Monit 2005 Jun; 27(3): 315–21

    Article  PubMed  CAS  Google Scholar 

  6. Vidal E, Cantarell C, Capdevila L, et al. Mycophenolate mofetil pharmacokinetics in transplant patients receiving cyclosporine or tacrolimus in combination therapy. Pharmacol Toxicol 2000 Oct; 87(4): 182–4

    Article  PubMed  CAS  Google Scholar 

  7. Ensom MH, Partovi N, Decarie D, et al. Mycophenolate pharmacokinetics in early period following lung or heart transplantation. Ann Pharmacother 2003 Dec; 37(12): 1761–7

    Article  PubMed  CAS  Google Scholar 

  8. Taylor DO, Edwards LB, Boucek MM, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report — 2007. J Heart Lung Transplant 2007 Aug; 26(8): 769–81

    Article  PubMed  Google Scholar 

  9. Trulock EP, Christie JD, Edwards LB, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult lung and heart-lung transplantation report — 2007. J Heart Lung Transplant 2007 Aug; 26(8): 782–95

    Article  PubMed  Google Scholar 

  10. Aurora P, Boucek MM, Christie J, et al. Registry of the International Society for Heart and Lung Transplantation: tenth official pediatric lung and heart/lung transplantation report — 2007. J Heart Lung Transplant 2007 Dec; 26(12): 1223–8

    Article  PubMed  Google Scholar 

  11. Kaufman D, Shapiro RLM, Cherikh W, et al. Immunosuppression: practice and trends. Am J Transplant 2004; 4 Suppl. 9: 38–53

    Article  PubMed  Google Scholar 

  12. Pou L, Brunet M, Cantarell C, et al. Mycophenolic acid plasma concentrations: influence of comedication. Ther Drug Monit 2001 Feb; 23(1): 35–8

    Article  PubMed  CAS  Google Scholar 

  13. Galiwango PJ, Delgado DH, Yan R, et al. Mycophenolate mofetil dose reduction for gastrointestinal intolerance is associated with increased rates of rejection in heart transplant patients. J Heart Lung Transplant 2008 Jan; 27(1): 72–7

    Article  PubMed  Google Scholar 

  14. Eisen HJ, Kobashigawa J, Keogh A, et al. Three-year results of a randomized, double-blind, controlled trial of mycophenolate mofetil versus azathioprine in cardiac transplant recipients. J Heart Lung Transplant 2005 May; 24(5): 517–25

    Article  PubMed  Google Scholar 

  15. Kobashigawa J, Miller L, Renlund D, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation 1998 Aug 27; 66(4): 507–15

    Article  PubMed  CAS  Google Scholar 

  16. Meiser BM, Pfeiffer M, Schmidt D, et al. Combination therapy with tacrolimus and mycophenolate mofetil following cardiac transplantation: importance of mycophenolic acid therapeutic drug monitoring. J Heart Lung Transplant 1999 Feb; 18(2): 143–9

    Article  PubMed  CAS  Google Scholar 

  17. Cantarovich M, Giannetti N, Cecere R, et al. Time points predictors of cyclosporine microemulsion and of mycophenolic acid area-under-the-curve (0–12 hr) in long-term heart transplant patients [abstract no. 66]. Am J Transplant 2003 May; 3(S5): 168

    Google Scholar 

  18. Ting LS, Partovi N, Levy RD, et al. Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and acyl glucuronide metabolites in stable thoracic transplant recipients. Ther Drug Monit 2008 Jun; 30(3): 282–91

    Article  PubMed  CAS  Google Scholar 

  19. Devyatko E, Ploner M, Zuckermann A, et al. Value of mycophenolic acid trough level monitoring after lung transplantation. Transplant Proc 2002 Aug; 34(5): 1881–3

    Article  PubMed  CAS  Google Scholar 

  20. Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J 2004 Jan; 23(1): 159–71

    Article  PubMed  CAS  Google Scholar 

  21. Snell GI, Westall GP. Immunosuppression for lung transplantation: evidence to date. Drugs 2007; 67(11): 1531–9

    Article  PubMed  CAS  Google Scholar 

  22. Kahan BD, Keown P, Levy GA, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002 Mar; 24(3): 330–50

    Article  PubMed  CAS  Google Scholar 

  23. DeNofrio D, Loh E, Kao A, et al. Mycophenolic acid concentrations are associated with cardiac allograft rejection. J Heart Lung Transplant 2000 Nov; 19(11): 1071–6

    Article  PubMed  CAS  Google Scholar 

  24. Shaw LM, Korecka M, DeNofrio D, et al. Pharmacokinetic, pharmacodynamic, and outcome investigations as the basis for mycophenolic acid therapeutic drug monitoring in renal and heart transplant patients. Clin Biochem 2001 Feb; 34(1): 17–22

    Article  PubMed  CAS  Google Scholar 

  25. Dosch AO, Ehlermann P, Koch A, et al. A comparison of measured trough levels and abbreviated AUC estimation by limited sampling strategies for monitoring mycophenolic acid exposure in stable heart transplant patients receiving cyclosporin A-containing and cyclosporin A-free immunosuppressive regimens. Clin Ther 2006 Jun; 28(6): 893–905

    Article  PubMed  CAS  Google Scholar 

  26. Mardigyan V, Giannetti N, Cecere R, et al. Best single time points to predict the area-under-the-curve in long-term heart transplant patients taking mycophenolate mofetil in combination with cyclosporine or tacrolimus. J Heart Lung Transplant 2005 Oct; 24(10): 1614–8

    Article  PubMed  Google Scholar 

  27. Gajarski RJ, Crowley DC, Zamberlan MC, et al. Lack of correlation between mycophenolate mofetil dose and MPA level in pediatric and young adult cardiac transplant patients: does the MPA level matter? Am J Transplant 2004 Sep; 4(9): 1495–500

    Article  PubMed  CAS  Google Scholar 

  28. Ting LS, Partovi N, Levy RD, et al. Limited sampling strategy for predicting area under the concentration-time curve of mycophenolic acid in adult lung transplant recipients. Pharmacotherapy 2006 Sep; 26(9): 1232–40

    Article  PubMed  CAS  Google Scholar 

  29. Yamani MH, Starling RC, Goormastic M, et al. The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection. Transplantation 2000 Jun 15; 69(11): 2326–30

    Article  PubMed  CAS  Google Scholar 

  30. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998 Jun; 34(6): 429–55

    Article  PubMed  CAS  Google Scholar 

  31. Premaud A, Debord J, Rousseau A, et al. A double absorption-phase model adequately describes mycophenolic acid plasma profiles in de novo renal transplant recipients given oral mycophenolate mofetil. Clin Pharmacokinet 2005; 44(8): 837–47

    Article  PubMed  CAS  Google Scholar 

  32. Gerbase MW, Fathi M, Spiliopoulos A, et al. Pharmacokinetics of mycophenolic acid associated with calcineurin inhibitors: long-term monitoring in stable lung recipients with and without cystic fibrosis. J Heart Lung Transplant 2003 May; 22(5): 587–90

    Article  PubMed  Google Scholar 

  33. Cussonneau X, Bolon-Larger M, Prunet-Spano C, et al. Relationship between MPA free fraction and free MPAG concentrations in heart transplant recipients based on simultaneous HPLC quantification of the target compounds in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007 Jun 1; 852(1–2): 674–8

    PubMed  CAS  Google Scholar 

  34. Picard N, Ratanasavanh D, Premaud A, et al. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 2005 Jan; 33(1): 139–46

    Article  PubMed  CAS  Google Scholar 

  35. Shipkova M, Armstrong VW, Wieland E, et al. Identification of glucoside and carboxyl-linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Br J Pharmacol 1999 Mar; 126(5): 1075–82

    Article  PubMed  CAS  Google Scholar 

  36. Shipkova M, Strassburg CP, Braun F, et al. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol 2001 Mar; 132(5): 1027–34

    Article  PubMed  CAS  Google Scholar 

  37. Picard N, Cresteil T, Premaud A, et al. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit 2004 Dec; 26(6): 600–8

    Article  PubMed  CAS  Google Scholar 

  38. Schutz E, Shipkova M, Armstrong VW, et al. Identification of a pharmacologically active metabolite of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Clin Chem 1999 Mar; 45(3): 419–22

    PubMed  CAS  Google Scholar 

  39. Briffa N, Morris RE. New immunosuppressive regimens in lung transplantation. Eur Respir J 1997 Nov; 10(11): 2630–7

    Article  PubMed  CAS  Google Scholar 

  40. Mandla R, Line PD, Midtvedt K, et al. Automated determination of free mycophenolic acid and its glucuronide in plasma from renal allograft recipients. Ther Drug Monit 2003 Jun; 25(3): 407–14

    Article  PubMed  CAS  Google Scholar 

  41. Gensburger O, Picard N, Marquet P. Effect of mycophenolate acylglucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clin Chem 2009 May; 55(5): 986–93

    Article  PubMed  CAS  Google Scholar 

  42. Shipkova M, Armstrong VW, Weber L, et al. Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients. Ther Drug Monit 2002 Jun; 24(3): 390–9

    Article  PubMed  CAS  Google Scholar 

  43. Zucker K, Rosen A, Tsaroucha A, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol 1997 Sep; 5(3): 225–32

    Article  PubMed  CAS  Google Scholar 

  44. Meiser BM, Groetzner J, Kaczmarek I, et al. Tacrolimus or cyclosporine: which is the better partner for mycophenolate mofetil in heart transplant recipients? Transplantation 2004 Aug 27; 78(4): 591–8

    Article  PubMed  CAS  Google Scholar 

  45. Groetzner J, Meiser B, Schirmer J, et al. Tacrolimus/mycophenolate mofetil versus cyclosporine/mycophenolate mofetil: comparison of mycophenolate acid trough levels and coronary vasomotor function. J Heart Lung Transplant 2001 Feb; 20(2): 191

    Article  Google Scholar 

  46. Zucker K, Tsaroucha A, Olson L, et al. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit 1999 Feb; 21(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  47. Smak Gregoor PJ, van Gelder T, Hesse CJ, et al. Mycophenolic acid plasma concentrations in kidney allograft recipients with or without cyclosporin: a cross-sectional study. Nephrol Dial Transplant 1999 Mar; 14(3): 706–8

    Article  PubMed  CAS  Google Scholar 

  48. van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit 2001 Apr; 23(2): 119–28

    Article  PubMed  Google Scholar 

  49. Cattaneo D, Perico N, Gaspari F, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int 2002 Sep; 62(3): 1060–7

    Article  PubMed  CAS  Google Scholar 

  50. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med 2003 Sep 18; 349(12): 1157–67

    Article  PubMed  CAS  Google Scholar 

  51. Bartelink IH, Rademaker CM, Schobben AF, et al. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 2006; 45(11): 1077–97

    Article  PubMed  CAS  Google Scholar 

  52. Filler G, Drick-Peart J, Christians U. Pharmacokinetics of mycophenolate mofetil and sirolimus in children. Ther Drug Monit 2008 Apr; 30(2): 138–42

    Article  PubMed  CAS  Google Scholar 

  53. Dipchand AI, Pietra B, McCrindle BW, et al. Mycophenolic acid levels in pediatric heart transplant recipients receiving mycophenolate mofetil. J Heart Lung Transplant 2001 Oct; 20(10): 1035–43

    Article  PubMed  CAS  Google Scholar 

  54. Ting LS, Partovi N, Levy RD, et al. Pharmacokinetics of mycophenolic acid and its glucuronidated metabolites in stable lung transplant recipients. Ann Pharmacother 2006 Sep; 40(9): 1509–16

    Article  PubMed  CAS  Google Scholar 

  55. Knight SR, Morris PJ. Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review. Transplantation 2008 Jun 27; 85(12): 1675–85

    Article  PubMed  CAS  Google Scholar 

  56. Cantin B, Giannetti N, Parekh H, et al. Mycophenolic acid concentrations in long-term heart transplant patients: relationship with calcineurin antagonists and acute rejection. Clin Transplant 2002 Jun; 16(3): 196–201

    Article  PubMed  Google Scholar 

  57. Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007 Nov; 7(11): 2496–503

    Article  PubMed  CAS  Google Scholar 

  58. Kuypers DR, de Jonge H, Naesens M, et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther 2008 Apr; 30(4): 673–83

    Article  PubMed  CAS  Google Scholar 

  59. Meiser BM, Pfeiffer M, Schmidt D, et al. The efficacy of the combination of tacrolimus and mycophenolate mofetil for prevention of acute myocardial rejection is dependent on routine monitoring of mycophenolic acid trough acid levels. Transplant Proc 1999 Feb; 31(1–2): 84–7

    Article  PubMed  CAS  Google Scholar 

  60. van Gelder T, Hilbrands LB, Vaurenterghem Y, et al. A randomized doubleblind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999 Jul 27; 68(2): 261–6

    Article  PubMed  Google Scholar 

  61. Kaczmarek I, Bigdeli AK, Vogeser M, et al. Defining algorithms for efficient therapeutic drug monitoring of mycophenolate mofetil in heart transplant recipients. Ther Drug Monit 2008 Aug; 30(4): 419–27

    PubMed  CAS  Google Scholar 

  62. Premaud A, Le Meur Y, Debord J, et al. Maximum a posteriori Bayesian estimation of mycophenolic acid pharmacokinetics in renal transplant recipients at different postgrafting periods. Ther Drug Monit 2005 Jun; 27(3): 354–61

    Article  PubMed  CAS  Google Scholar 

  63. Le Guellec C, Bourgoin H, Buchler M, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet 2004; 43(4): 253–66

    Article  PubMed  Google Scholar 

  64. Hesse CJ, Vantrimpont P, van Riemsdijk-van Overbeeke IC, et al. The value of routine monitoring of mycophenolic acid plasma levels after clinical heart transplantation. Transplant Proc 2001 May; 33(3): 2163–4

    Article  PubMed  CAS  Google Scholar 

  65. Hale MD, Nicholls AJ, Bullingham RE, et al. The pharmacokineticpharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther 1998 Dec; 64(6): 672–83

    Article  PubMed  CAS  Google Scholar 

  66. Shipkova M, Beck H, Voland A, et al. Identification of protein targets for mycophenolic acid acyl glucuronide in rat liver and colon tissue. Proteomics 2004 Sep; 4(9): 2728–38

    Article  PubMed  CAS  Google Scholar 

  67. Shipkova M, Wieland E, Schutz E, et al. The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes. Transplant Proc 2001 Feb; 33(1–2): 1080–1

    Article  PubMed  CAS  Google Scholar 

  68. Kuypers DR, Claes K, Evenepoel P, et al. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther 2004 May; 75(5): 434–47

    Article  PubMed  CAS  Google Scholar 

  69. Zuckermann A, Klepetko W. Use of cyclosporine in thoracic transplantation. Transplant Proc 2004 Mar; 36 (2 Suppl.): 331–6S

    Article  CAS  Google Scholar 

  70. Poirier CD. Promise of Neoral C2, basiliximab, and everolimus in lung transplantation. Transplant Proc 2004 Mar; 36 (2 Suppl.): 509–13S

    Article  CAS  Google Scholar 

  71. Stenton SB, Partovi N, Ensom MH. Sirolimus: the evidence for clinical pharmacokinetic monitoring. Clin Pharmacokinet 2005; 44(8): 769–86

    Article  PubMed  CAS  Google Scholar 

  72. McWilliams TJ, Levvey BJ, Russell PA, et al. Interstitial pneumonitis associated with sirolimus: a dilemma for lung transplantation. J Heart Lung Transplant 2003 Feb; 22(2): 210–3

    Article  PubMed  Google Scholar 

  73. King-Biggs MB, Dunitz JM, Park SJ, et al. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation 2003 May 15; 75(9): 1437–43

    Article  PubMed  Google Scholar 

  74. Zuckermann A, Manito N, Epailly E, et al. Multidisciplinary insights on clinical guidance for the use of proliferation signal inhibitors in heart transplantation. J Heart Lung Transplant 2008 Feb; 27(2): 141–9

    Article  PubMed  Google Scholar 

  75. Zahir H, Keogh AM, Akhlaghi F. Apparent clearance of sirolimus in heart transplant recipients: impact of primary diagnosis and serum lipids. Ther Drug Monit 2006 Oct; 28(5): 614–22

    PubMed  CAS  Google Scholar 

  76. Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 2001; 40(8): 573–85

    Article  PubMed  CAS  Google Scholar 

  77. Keogh A, Richardson M, Ruygrok P, et al. Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation 2004 Oct 26; 110(17): 2694–700

    Article  PubMed  CAS  Google Scholar 

  78. Zucker MJ, Baran DA, Arroyo LH, et al. De novo immunosuppression with sirolimus and tacrolimus in heart transplant recipients compared with cyclosporine and mycophenolate mofetil: a one-year follow-up analysis. Transplant Proc 2005 Jun; 37(5): 2231–9

    Article  PubMed  CAS  Google Scholar 

  79. Groetzner J, Meiser B, Landwehr P, et al. Mycophenolate mofetil and sirolimus as calcineurin inhibitor-free immunosuppression for late cardiactransplant recipients with chronic renal failure. Transplantation 2004 Feb 27; 77(4): 568–74

    Article  PubMed  CAS  Google Scholar 

  80. Zimmerman JJ, Ferron GM, Lim HK, et al. The effect of a high-fat meal on the oral bioavailability of the immunosuppressant sirolimus (rapamycin). J Clin Pharmacol 1999 Nov; 39(11): 1155–61

    PubMed  CAS  Google Scholar 

  81. Picard N, Djebli N, Sauvage FL, et al. Metabolism of sirolimus in the presence or absence of cyclosporine by genotyped human liver microsomes and recombinant cytochromes P450 3A4 and 3A5. Drug Metab Dispos 2007 Mar; 35(3): 350–5

    Article  PubMed  CAS  Google Scholar 

  82. Djebli N, Rousseau A, Hoizey G, et al. Sirolimus population pharmacokinetic/pharmacogenetic analysis and Bayesian modelling in kidney transplant recipients. Clin Pharmacokinet 2006; 45(11): 1135–48

    Article  PubMed  CAS  Google Scholar 

  83. Zimmerman JJ. Exposure-response relationships and drug interactions of sirolimus. AAPS J 2004; 6(4): e28

    Article  PubMed  Google Scholar 

  84. Mabasa VH, Ensom MH. The role of therapeutic monitoring of everolimus in solid organ transplantation. Ther Drug Monit 2005 Oct; 27(5): 666–76

    Article  PubMed  CAS  Google Scholar 

  85. Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 2003 Aug 28; 349(9): 847–58

    Article  PubMed  CAS  Google Scholar 

  86. Snell GI, Valentine VG, Vitulo P, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant 2006 Jan; 6(1): 169–77

    Article  PubMed  CAS  Google Scholar 

  87. Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 2004; 43(2): 83–95

    Article  PubMed  CAS  Google Scholar 

  88. Kovarik JM, Noe A, Berthier S, et al. Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J Clin Pharmacol 2003 Feb; 43(2): 141–7

    Article  PubMed  CAS  Google Scholar 

  89. Kovarik JM, Hsu CH, McMahon L, et al. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther 2001 Sep; 70(3): 247–54

    Article  PubMed  CAS  Google Scholar 

  90. Kovarik JM, Eisen H, Dorent R, et al. Everolimus in de novo cardiac transplantation: pharmacokinetics, therapeutic range, and influence on cyclosporine exposure. J Heart Lung Transplant 2003 Oct; 22(10): 1117–25

    Article  PubMed  Google Scholar 

  91. Kovarik JM, Snell GI, Valentine V, et al. Everolimus in pulmonary transplantation: pharmacokinetics and exposure-response relationships. J Heart Lung Transplant 2006 Apr; 25(4): 440–6

    Article  PubMed  Google Scholar 

  92. Brandhorst G, Tenderich G, Zittermann A, et al. Everolimus exposure in cardiac transplant recipients is influenced by concomitant calcineurin inhibitor. Ther Drug Monit 2008 Feb; 30(1): 113–6

    Article  PubMed  CAS  Google Scholar 

  93. Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother 2002 Jun; 36(6): 981–5

    Article  PubMed  CAS  Google Scholar 

  94. Van Damme-Lombaerts R, Webb NA, Hoyer PF, et al. Single-dose pharmacokinetics and tolerability of everolimus in stable pediatric renal transplant patients. Pediatr Transplant 2002 Apr; 6(2): 147–52

    Article  PubMed  Google Scholar 

  95. Hoyer PF, Ettenger R, Kovarik JM, et al. Everolimus in pediatric de nova renal transplant patients. Transplantation 2003 Jun 27; 75(12): 2082–5

    Article  PubMed  Google Scholar 

  96. Doyle RL, Hertz MI, Dunitz JM, et al. RAD in stable lung and heart/lung transplant recipients: safety, tolerability, pharmacokinetics, and impact of cystic fibrosis. J Heart Lung Transplant 2001 Mar; 20(3): 330–9

    Article  PubMed  CAS  Google Scholar 

  97. Zuckermann A. Clinical experience with Certican (everolimus) in maintenance heart transplant patients at the Medical University of Vienna. J Heart Lung Transplant 2005 Apr; 24 (4 Suppl.): S206–9

    Article  PubMed  Google Scholar 

  98. Starling RC, Hare JM, Hauptman P, et al. Therapeutic drug monitoring for everolimus in heart transplant recipients based on exposure-effect modeling. Am J Transplant 2004 Dec; 4(12): 2126–31

    Article  PubMed  CAS  Google Scholar 

  99. Anglicheau D, Thervet E, Etienne I, et al. CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther 2004; 75(5): 422–33

    Article  PubMed  CAS  Google Scholar 

  100. Anglicheau D, Pallet N, Rabant M, et al. Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int 2006 Sep; 70(6): 1019–25

    Article  PubMed  CAS  Google Scholar 

  101. Oellerich M, Armstrong VW. The role of therapeutic drug monitoring in individualizing immunosuppressive drug therapy: recent developments. Ther Drug Monit 2006 Dec; 28(6): 720–5

    Article  PubMed  Google Scholar 

  102. Cole OJ, Shehata M, Rigg KM. Effect of SDZ RAD on transplant arteriosclerosis in the rat aortic model. Transplant Proc 1998 Aug; 30(5): 2200–3

    Article  PubMed  CAS  Google Scholar 

  103. Schuurman HJ, Pally C, Weckbecker G, et al. SDZ RAD inhibits cold ischemia-induced vascular remodeling. Transplant Proc 1999 Feb; 31(1–2): 1024–5

    Article  PubMed  CAS  Google Scholar 

  104. Nishimura T, Faul JL, Berry GJ, et al. 40-O-(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 2001 Feb; 163(2): 498–502

    PubMed  CAS  Google Scholar 

  105. Vigano M, Tuzcu M, Benza R, et al. Prevention of acute rejection and allograft vasculopathy by everolimus in cardiac transplants recipients: a 24-month analysis. J Heart Lung Transplant 2007 Jun; 26(6): 584–92

    Article  PubMed  Google Scholar 

  106. Dumont RJ, Ensom MH. Methods for clinical monitoring of cyclosporin in transplant patients. Clin Pharmacokinet 2000 May; 38(5): 427–47

    Article  PubMed  CAS  Google Scholar 

  107. Trull A, Steel L, Sharples L, et al. Randomized, trough blood cyclosporine concentration-controlled trial to compare the pharmacodynamics of Sandimmune and Neoral in de novo lung transplant recipients. Ther Drug Monit 1999 Feb; 21(1): 17–26

    Article  PubMed  CAS  Google Scholar 

  108. Nohria A, Ehtisham J, Ramahi TM. Optimum maintenance trough levels of cyclosporine in heart transplant recipients given corticosteroid-free regimen. J Heart Lung Transplant 1998 Sep; 17(9): 849–53

    PubMed  CAS  Google Scholar 

  109. El Gamel A, Keevil B, Rahman A, et al. Cardiac allograft rejection: do trough cyclosporine levels correlate with the grade of histologic rejection? J Heart Lung Transplant 1997 Mar; 16(3): 268–74

    PubMed  Google Scholar 

  110. Trull A, Hue K, Tan K, et al. Cross-correlation of cyclosporine concentrations and biochemical measures of kidney and liver function in heart and heart-lung transplant recipients. Clin Chem 1990 Aug; 36(8 Pt 1): 1474–8

    PubMed  CAS  Google Scholar 

  111. Trull AK, Best NG, Tan KK, et al. Blood cyclosporin concentrations but not doses correlate with acute changes in renal function following heart and heart-lung transplantation. Ther Drug Monit 1992 Aug; 14(4): 275–80

    Article  PubMed  CAS  Google Scholar 

  112. Aumente MD, Arizón JM, Segura J, et al. Relationship between pharmacokinetic parameters of cyclosporin and the incidence of acute rejection after heart transplantation. Transplant Proc 2005 Nov; 37(9): 4014–7

    Article  PubMed  CAS  Google Scholar 

  113. Monforte V, Bullich S, Pou L, et al. Blood cyclosporine C0 and C2 concentrations and cytomegalovirus infections following lung transplantation. Transplant Proc 2003 Aug; 35(5): 1992–3

    Article  PubMed  CAS  Google Scholar 

  114. Akhlaghi F, Gonzalez L, Trull AK. Association between cyclosporine concentrations at 2 hours post-dose and clinical outcomes in de novo lung transplant recipients. J Heart Lung Transplant 2005 Dec; 24(12): 2120–8

    Article  PubMed  Google Scholar 

  115. Solari SG, Goldberg LR, DeNofrio D, et al. Cyclosporine monitoring with 2-hour postdose levels in heart transplant recipients. Ther Drug Monit 2005 Aug; 27(4): 417–21

    Article  PubMed  CAS  Google Scholar 

  116. Best NG, Trull AK, Tan KK, et al. Blood cyclosporin concentrations and the short-term risk of lung rejection following heart-lung transplantation. Br J Clin Pharmacol 1992 Dec; 34(6): 513–20

    Article  PubMed  CAS  Google Scholar 

  117. Cantarovich M, Elstein E, de Varennes B, et al. Clinical benefit of Neoral dose monitoring with cyclosporine 2-hr post-dose levels compared with trough levels in stable heart transplant patients. Transplantation 1999 Dec 27; 68(12): 1839–42

    Article  PubMed  CAS  Google Scholar 

  118. Cantarovich M, Besner JG, Barkun JS, et al. Two-hour cyclosporine level determination is the appropriate tool to monitor Neoral therapy. Clin Transplant 1998 Jun; 12(3): 243–9

    PubMed  CAS  Google Scholar 

  119. Baraldo M, Francesconi A, Barbone F, et al. C(2) monitoring of cyclosporine in stable heart transplant patients after two daily and three daily doses. Transplant Proc 2002 Dec; 34(8): 3246–8

    Article  PubMed  CAS  Google Scholar 

  120. Caforio AL, Tona F, Piaserico S, et al. C2 is superior to C0 as predictor of renal toxicity and rejection risk profile in stable heart transplant recipients. Transpl Int 2005 Jan; 18(1): 116–24

    Article  PubMed  Google Scholar 

  121. Delgado DH, Rao V, Hamel J, et al. Monitoring of cyclosporine 2-hour post-dose levels in heart transplantation: improvement in clinical outcomes. J Heart Lung Transplant 2005 Sep; 24(9): 1343–6

    Article  PubMed  Google Scholar 

  122. Glanville AR, Morton JM, Aboyoun CL, et al. Cyclosporine C2 monitoring improves renal dysfunction after lung transplantation. J Heart Lung Transplant 2004 Oct; 23(10): 1170–4

    Article  PubMed  Google Scholar 

  123. Glanville AR, Aboyoun CL, Morton JM, et al. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant 2006 Aug; 25(8): 928–34

    Article  PubMed  Google Scholar 

  124. Cantarovich M, Giannetti N, Cecere R. Impact of cyclosporine 2-h level and mycophenolate mofetil dose on clinical outcomes in de novo heart transplant patients receiving anti-thymocyte globulin induction. Clin Transplant 2003 Apr; 17(2): 144–50

    Article  PubMed  Google Scholar 

  125. Mathias HC, Ozalp F, Will MB, et al. A randomized, controlled trial of C0- versus C2-guided therapeutic drug monitoring of cyclosporine in stable heart transplant patients. J Heart Lung Transplant 2005 Dec; 24(12): 2137–43

    Article  PubMed  Google Scholar 

  126. Cantarovich M, Quantz M, Elstein E, et al. Neoral dose monitoring with cyclosporine 2-hour postdose levels in heart transplant patients receiving anti-thymocyte globulin induction. Transplant Proc 2000 Mar; 32(2): 446–8

    Article  PubMed  CAS  Google Scholar 

  127. Cantarovich M, Giannetti N, Cecere R. Relationship between endomyocardial biopsy score and cyclosporine 2-h post-dose levels (C) in heart transplant patients receiving anti-thymocyte globulin induction. Clin Transplant 2004 Apr; 18(2): 148–51

    Article  PubMed  Google Scholar 

  128. Cantarovich M, Ross H, Arizón JM, et al. Benefit of Neoral C2 monitoring in de novo cardiac transplant recipients receiving basiliximab induction. Transplantation 2008 Apr 15; 85(7): 992–9

    Article  PubMed  CAS  Google Scholar 

  129. Morton JM, Aboyoun CL, Malouf MA, et al. Enhanced clinical utility of de novo cyclosporine C2 monitoring after lung transplantation. J Heart Lung Transplant 2004 Sep; 23(9): 1035–9

    Article  PubMed  Google Scholar 

  130. Schubert S, Abdul-Khaliq H, Lehmkuhl HB, et al. Advantages of C2 monitoring to avoid acute rejection in pediatric heart transplant recipients. J Heart Lung Transplant 2006 Jun; 25(6): 619–25

    Article  PubMed  CAS  Google Scholar 

  131. Cooney GF, Johnston A. Neoral C-2 monitoring in cardiac transplant patients. Transplant Proc 2001 Feb; 33(1–2): 1572–5

    Article  PubMed  CAS  Google Scholar 

  132. Balram C, Sivathasan C, Cheung YB, et al. A limited sampling strategy for the estimation of 12-hour Neoral systemic drug exposure in heart transplant recipients. J Heart Lung Transplant 2002 Sep; 21(9): 1016–21

    Article  PubMed  CAS  Google Scholar 

  133. Monchaud C, Rousseau A, Leger F, et al. Limited sampling strategies using Bayesian estimation or multilinear regression for cyclosporin AUC(0–12) monitoring in cardiac transplant recipients over the first year post-transplantation. Eur J Clin Pharmacol 2003 Apr; 58(12): 813–20

    PubMed  CAS  Google Scholar 

  134. Rousseau A, Monchaud C, Debord J, et al. Bayesian forecasting of oral cyclosporin pharmacokinetics in stable lung transplant recipients with and without cystic fibrosis. Ther Drug Monit 2003 Feb; 25(1): 28–35

    Article  PubMed  CAS  Google Scholar 

  135. Undre NA, Stevenson PJ. Pharmacokinetics of tacrolimus in heart transplantation. Transplant Proc 2002 Aug; 34(5): 1836–8

    Article  PubMed  CAS  Google Scholar 

  136. Wang CH, Ko WJ, Chou NK, et al. Therapeutic drug monitoring of tacrolimus in cardiac transplant recipients: a comparison with cyclosporine Neoral. Transplant Proc 2004 Oct; 36(8): 2386–7

    Article  PubMed  CAS  Google Scholar 

  137. Aumente Rubio MD, Arizón del Prado JM, López Malo de Molina MD, et al. Clinical pharmacokinetics of tacrolimus in heart transplantation: new strategies of monitoring. Transplant Proc 2003 Aug; 35(5): 1988–91

    Article  CAS  Google Scholar 

  138. Sgrosso JL, Araujo GL, Vazquez MC. Tacrolimus pharmacokinetics in heart transplant. Transplant Proc 2002 Feb; 34(1): 142–3

    Article  PubMed  CAS  Google Scholar 

  139. Knoop C, Thiry P, Saint-Marcoux F, et al. Tacrolimus pharmacokinetics and dose monitoring after lung transplantation for cystic fibrosis and other conditions. Am J Transplant 2005 Jun; 5(6): 1477–82

    Article  PubMed  CAS  Google Scholar 

  140. Aidong W, Zhenjie C, Tong L, et al. Therapeutic drug monitoring of tacrolimus in early stage after heart transplantation. Transplant Proc 2004 Oct; 36(8): 2388–9

    Article  PubMed  CAS  Google Scholar 

  141. Saint-Marcoux F, Knoop C, Debord J, et al. Pharmacokinetic study of tacrolimus in cystic fibrosis and non-cystic fibrosis lung transplant patients and design of Bayesian estimators using limited sampling strategies. Clin Pharmacokinet 2005; 44(12): 1317–28

    Article  PubMed  CAS  Google Scholar 

  142. Etienne I, Toupance O, Thierry A, et al. Benefit of a 50% reduction of cyclosporine exposure in stable kidney transplant recipients treated with mycophenolate mofetil without corticosteroids [abstract no. 232]. The DICAM Randomized Study. Am J Transplant 2007 May; 7(52): 207

    Google Scholar 

  143. Ray JE, Keogh AM, McLachlan AJ. Decision support tool to individualize cyclosporine dose in stable, long-term heart transplant recipients receiving metabolic inhibitors: overcoming limitations of cyclosporine C2 monitoring. J Heart Lung Transplant 2006 Oct; 25(10): 1223–9

    Article  PubMed  Google Scholar 

  144. Morton JM, Mcwhinney B, Hickman PE, et al. Therapeutic drug monitoring (TDM) of prednisolone in lung transplantation. J Heart Lung Transplant 2001 Feb; 20(2): 192

    Article  PubMed  Google Scholar 

  145. Majid O, Akhlaghi F, Lee T, et al. Simultaneous determination of plasma prednisolone, prednisone, and cortisol levels by high-performance liquid chromatography. Ther Drug Monit 2001 Apr; 23(2): 163–8

    Article  PubMed  CAS  Google Scholar 

  146. Glander P, Hambach P, Braun KP, et al. Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am J Transplant 2004 Dec; 4(12): 2045–51

    Article  PubMed  CAS  Google Scholar 

  147. Wang J, Yang JW, Zeevi A, et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther 2008 May; 83(5): 711–7

    Article  PubMed  CAS  Google Scholar 

  148. Hoffmann SC, Stanley EM, Darrin CE, et al. Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation 2001 Oct 27; 72(8): 1444–50

    Article  PubMed  CAS  Google Scholar 

  149. Kutukculer N, Clark K, Rigg KM, et al. The value of posttransplant monitoring of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-8, and soluble CD23 in the plasma of renal allograft recipients. Transplantation 1995 Feb 15; 59(3): 333–40

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Limoges University Hospital and the French Patients’ Association ‘Vaincre la Mucoviscidose’ [Win against Cystic Fibrosis]. Pierre Marquet has received consultancies and honoraria from Roche and Novartis and research grants from Roche, Novartis and Astellas. Caroline Monchaud has no conflicts of interest that are directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Marquet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monchaud, C., Marquet, P. Pharmacokinetic Optimization of Immunosuppressive Therapy in Thoracic Transplantation: Part II. Clin Pharmacokinet 48, 489–516 (2009). https://doi.org/10.2165/11317240-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11317240-000000000-00000

Keywords

Navigation