Skip to main content
Log in

Pharmacokinetic Optimization of Immunosuppressive Therapy in Thoracic Transplantation: Part I

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Although immunosuppressive treatments and therapeutic drug monitoring (TDM) have significantly contributed to the increased success of thoracic transplantation, there is currently no consensus on the best immunosuppressive strategies. Maintenance therapy typically consists of a triple-drug regimen including corticosteroids, a calcineurin inhibitor (ciclosporin or tacrolimus) and either a purine synthesis antagonist (mycophenolate mofetil or azathioprine) or a mammalian target of rapamycin inhibitor (sirolimus or everolimus). The incidence of acute and chronic rejection and of mortality after thoracic transplantation is still high compared with other types of solid organ transplantation. The high allogenicity and immunogenicity of the lungs justify the use of higher doses of immunosuppressants, putting lung transplant recipients at a higher risk of drug-induced toxicities. All immunosuppressants are characterized by large intra- and interindividual variability of their pharmacokinetics and by a narrow therapeutic index. It is essential to know their pharmacokinetic properties and to use them for treatment individualization through TDM in order to improve the treatment outcome. Unlike the kidneys and the liver, the heart and the lungs are not directly involved in drug metabolism and elimination, which may be the cause of pharmacokinetic differences between patients from all of these transplant groups.

TDM is mandatory for most immunosuppressants and has become an integral part of immunosuppressive drug therapy. It is usually based on trough concentration (C0) monitoring, but other TDM tools include the area under the concentration-time curve (AUC) over the (12-hour) dosage interval or the AUC over the first 4 hours post-dose, as well as other single concentration-time points such as the concentration at 2 hours. Given the peculiarities of thoracic transplantation, a review of the pharmacokinetics and TDM of the main immunosuppressants used in thoracic transplantation is presented in this article. Even more so than in other solid organ transplant populations, their pharmacokinetics are characterized by wide intra- and interindividual variability in thoracic transplant recipients. The pharmacokinetics of ciclosporin in heart and lung transplant recipients have been explored in a number of studies, but less is known about the pharmacokinetics of mycophenolate mofetil and tacrolimus in these populations, and there are hardly any studies on the pharmacokinetics of sirolimus and everolimus. Given the increased use of these molecules in thoracic transplant recipients, their pharmacokinetics deserve to be explored in depth. There are very few data, some of which are conflicting, on the practices and outcomes of TDM of immunosuppressants after thoracic transplantation. The development of sophisticated TDM tools dedicated to thoracic transplantation are awaited in order to accurately evaluate the patients’ exposure to drugs in general and, in particular, to immunosuppressants. Finally, large cohort TDM studies need to be conducted in thoracic transplant patients in order to identify the most predictive exposure indices and their target values, and to validate the clinical usefulness of improved TDM in these conditions.

In part I of the article, we review the pharmacokinetics and TDM of calcineurin inhibitors. In part II, we will review the pharmacokinetics and TDM of mycophenolate and mammalian target of rapamycin inhibitors, and provide an overall discussion along with perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX

Similar content being viewed by others

References

  1. Zuckermann A, Klepetko W. Use of cyclosporine in thoracic transplantation. Transplant Proc 2004 Mar; 36 (2 Suppl.): 331S–336S

    Article  PubMed  CAS  Google Scholar 

  2. Taylor DO, Edwards LB, Boucek MM, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report — 2007. J Heart Lung Transplant 2007 Aug; 26(8): 769–81

    Article  PubMed  Google Scholar 

  3. Trulock EP, Christie JD, Edwards LB, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult lung and heart-lung transplantation report — 2007. J Heart Lung Transplant 2007 Aug; 26(8): 782–95

    Article  PubMed  Google Scholar 

  4. Jaksch P, Kocher A, Neuhauser P, et al. Monitoring C2 level predicts exposure in maintenance lung transplant patients receiving the microemulsion formulation of cyclosporine (Neoral). J Heart Lung Transplant 2005 Aug; 24(8): 1076–80

    Article  PubMed  Google Scholar 

  5. Galiwango PJ, Delgado DH, Yan R, et al. Mycophenolate mofetil dose reduction for gastrointestinal intolerance is associated with increased rates of rejection in heart transplant patients. J Heart Lung Transplant 2008 Jan; 27(1): 72–7

    Article  PubMed  Google Scholar 

  6. Hangler HB, Ruttmann E, Geltner C, et al. Single time point measurement by C2 or C3 is highly predictive in cyclosporine area under the curve estimation immediately after lung transplantation. Clin Transplant 2008 Jan; 22(1): 35–40

    PubMed  Google Scholar 

  7. Estenne M, Maurer JR, Boehler A, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant 2002 Mar; 21(3): 297–310

    Article  PubMed  Google Scholar 

  8. Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J 2004 Jan; 23(1): 159–71

    Article  PubMed  CAS  Google Scholar 

  9. Snell GI, Westall GP. Immunosuppression for lung transplantation: evidence to date. Drugs 2007; 67(11): 1531–9

    Article  PubMed  CAS  Google Scholar 

  10. Cantarovich M, Elstein E, de Varennes B, et al. Clinical benefit of neoral dose monitoring with cyclosporine 2-hr post-dose levels compared with trough levels in stable heart transplant patients. Transplantation 1999 Dec 27; 68(12): 1839–42

    Article  PubMed  CAS  Google Scholar 

  11. Oellerich M, Armstrong VW. The role of therapeutic drug monitoring in individualizing immunosuppressive drug therapy: recent developments. Ther Drug Monit 2006 Dec; 28(6): 720–5

    Article  PubMed  Google Scholar 

  12. Mahalati K, Belitsky P, Sketris I, et al. Neoral monitoring by simplified sparse sampling area under the concentration-time curve: its relationship to acute rejection and cyclosporine nephrotoxicity early after kidney transplantation. Transplantation 1999 Jul 15; 68(1): 55–62

    Article  PubMed  CAS  Google Scholar 

  13. Lindholm A, Kahan BD. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther 1993 Aug; 54(2): 205–18

    Article  PubMed  CAS  Google Scholar 

  14. Canadian Neoral Renal Transplantation Study Group. Absorption profiling of cyclosporine microemulsion (Neoral) during the first 2 weeks after renal transplantation. Transplantation 2001 Sep 27; 72(6): 1024–32

    Article  Google Scholar 

  15. Levy GA. C2 monitoring strategy for optimising cyclosporin immunosuppression from the Neoral formulation. Biodrugs 2001; 15(5): 279–90

    Article  PubMed  CAS  Google Scholar 

  16. Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007 Nov; 7(11): 2496–503

    Article  PubMed  CAS  Google Scholar 

  17. Shafi MA, Pasricha PJ. Post-surgical and obstructive gastroparesis. Curr Gastroenterol Rep 2007 Aug; 9(4): 280–5

    Article  PubMed  Google Scholar 

  18. Sodhi SS, Guo JP, Maurer AH, et al. Gastroparesis after combined heart and lung transplantation. J Clin Gastroenterol 2002 Jan; 34(1): 34–9

    Article  PubMed  CAS  Google Scholar 

  19. Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today 1992 Apr; 13(4): 136–42

    Article  PubMed  CAS  Google Scholar 

  20. Cooney GF, Johnston A. Neoral C-2 monitoring in cardiac transplant patients. Transplant Proc 2001 Feb; 33(1-2): 1572–5

    Article  PubMed  CAS  Google Scholar 

  21. Baraldo M, Pea F, Poz D, et al. Pharmacokinetics of two oral cyclosporin a formulations in clinically stable heart-transplant patients. Pharmacol Res 2001 Jun; 43(6): 547–51

    Article  PubMed  CAS  Google Scholar 

  22. Akhlaghi F, Keogh AM, McLachlan AJ, et al. Pharmacokinetics of cyclosporine in heart transplant recipients receiving metabolic inhibitors. J Heart Lung Transplant 2001 Apr; 20(4): 431–8

    Article  PubMed  CAS  Google Scholar 

  23. Ray JE, Keogh AM, McLachlan AJ. Decision support tool to individualize cyclosporine dose in stable, long-term heart transplant recipients receiving metabolic inhibitors: overcoming limitations of cyclosporine C2 monitoring. J Heart Lung Transplant 2006 Oct; 25(10): 1223–9

    Article  PubMed  Google Scholar 

  24. Balram C, Sivathasan C, Cheung YB, et al. A limited sampling strategy for the estimation of 12-hour Neoral systemic drug exposure in heart transplant recipients. J Heart Lung Transplant 2002 Sep; 21(9): 1016–21

    Article  PubMed  CAS  Google Scholar 

  25. Monchaud C, Rousseau A, Leger F, et al. Limited sampling strategies using Bayesian estimation or multilinear regression for cyclosporin AUC(0–12) monitoring in cardiac transplant recipients over the first year post-transplantation. Eur J Clin Pharmacol 2003 Apr; 58(12): 813–20

    PubMed  CAS  Google Scholar 

  26. Dumont RJ, Partovi N, Levy RD, et al. A limited sampling strategy for cyclosporine area under the curve monitoring in lung transplant recipients. J Heart Lung Transplant 2001 Aug; 20(8): 897–900

    Article  PubMed  CAS  Google Scholar 

  27. Tan KK, Hue KL, Strickland SE, et al. Altered pharmacokinetics of cyclosporin in heart-lung transplant recipients with cystic fibrosis. Ther Drug Monit 1990 Nov; 12(6): 520–4

    Article  PubMed  CAS  Google Scholar 

  28. Rousseau A, Monchaud C, Debord J, et al. Bayesian forecasting of oral cyclosporin pharmacokinetics in stable lung transplant recipients with and without cystic fibrosis. Ther Drug Monit 2003 Feb; 25(1): 28–35

    Article  PubMed  CAS  Google Scholar 

  29. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med 2003 Sep 18; 349(12): 1157–67

    Article  PubMed  CAS  Google Scholar 

  30. Akhlaghi F, Gonzalez L, Trull AK. Association between cyclosporine concentrations at 2 hours post-dose and clinical outcomes in de novo lung transplant recipients. J Heart Lung Transplant 2005 Dec; 24(12): 2120–8

    Article  PubMed  Google Scholar 

  31. Cantarovich M, Giannetti N, Cecere R. Impact of cyclosporine 2-h level and mycophenolate mofetil dose on clinical outcomes in de novo heart transplant patients receiving anti-thymocyte globulin induction. Clin Transplant 2003 Apr; 17(2): 144–50

    Article  PubMed  Google Scholar 

  32. Kesten S, Scavuzzo M, Chaparro C, et al. Pharmacokinetic profile and variability of cyclosporine versus neoral in patients with cystic fibrosis after lung transplantation. Pharmacotherapy 1998 Jul; 18(4): 847–50

    PubMed  CAS  Google Scholar 

  33. Knoop C, Vervier I, Thiry P, et al. Cyclosporine pharmacokinetics and dose monitoring after lung transplantation: comparison between cystic fibrosis and other conditions. Transplantation 2003 Aug 27; 76(4): 683–8

    Article  PubMed  CAS  Google Scholar 

  34. Reynaud-Gaubert M, Viard L, Girault D, et al. Improved absorption and bioavailability of cyclosporine A from a microemulsion formulation in lung transplant recipients affected with cystic fibrosis. Transplant Proc 1997 Aug; 29(5): 2450–3

    Article  PubMed  CAS  Google Scholar 

  35. Trull A, Steel L, Sharples L, et al. Randomized, trough blood cyclosporine concentration-controlled trial to compare the pharmacodynamics of Sandimmune and Neoral in de novo lung transplant recipients. Ther Drug Monit 1999 Feb; 21(1): 17–26

    Article  PubMed  CAS  Google Scholar 

  36. Parke J, Charles BG. NONMEM population pharmacokinetic modeling of orally administered cyclosporine from routine drug monitoring data after heart transplantation. Ther Drug Monit 1998 Jun; 20(3): 284–93

    Article  PubMed  CAS  Google Scholar 

  37. Rosenbaum SE, Baheti G, Trull AK, et al. Population pharmacokinetics of cyclosporine in cardiopulmonary transplant recipients. Ther Drug Monit 2005 Apr; 27(2): 116–22

    Article  PubMed  CAS  Google Scholar 

  38. Saint-Marcoux F, Marquet P, Rousseau A. Population pharmacokinetics of cyclosporine in cardiopulmonary transplant recipients [letter]. Ther Drug Monit 2006 Feb; 28(1): 138

    Article  PubMed  Google Scholar 

  39. Kahan BD, Dunn J, Fitts C, et al. Reduced inter- and intrasubject variability in cyclosporine pharmacokinetics in renal transplant recipients treated with a microemulsion formulation in conjunction with fasting, low-fat meals, or high-fat meals. Transplantation 1995 Feb 27; 59(4): 505–11

    PubMed  CAS  Google Scholar 

  40. Johnston A, David OJ, Cooney GF. Pharmacokinetic validation of neoral absorption profiling. Transplant Proc 2000 May; 32 (3A Suppl.): 53S–56S

    Article  PubMed  CAS  Google Scholar 

  41. Debord J, Risco E, Harel M, et al. Application of a gamma model of absorption to oral cyclosporin. Clin Pharmacokinet 2001; 40(5): 375–82

    Article  PubMed  CAS  Google Scholar 

  42. Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995 Sep 7; 333(10): 621–7

    Article  PubMed  CAS  Google Scholar 

  43. Akhlaghi F, McLachlan AJ, Keogh AM, et al. Effect of simvastatin on cyclosporine unbound fraction and apparent blood clearance in heart transplant recipients. Br J Clin Pharmacol 1997 Dec; 44(6): 537–42

    Article  PubMed  CAS  Google Scholar 

  44. McLachlan AJ, Tett SE. Effect of metabolic inhibitors on cyclosporine pharmacokinetics using a population approach. Ther Drug Monit 1998 Aug; 20(4): 390–5

    Article  PubMed  CAS  Google Scholar 

  45. Aurora P, Boucek MM, Christie J, et al. Registry of the International Society for Heart and Lung Transplantation: tenth official pediatric lung and heart/lung transplantation report — 2007. J Heart Lung Transplant 2007 Dec; 26(12): 1223–8

    Article  PubMed  Google Scholar 

  46. del Mar Fernández de Gatta M, Santos-Buelga D, Dominguez-Gil A, et al. Immunosuppressive therapy for paediatric transplant patients: pharmacokinetic considerations. Clin Pharmacokinet 2002; 41(2): 115–35

    Article  PubMed  Google Scholar 

  47. Bartelink IH, Rademaker CM, Schobben AF, et al. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 2006; 45(11): 1077–97

    Article  PubMed  CAS  Google Scholar 

  48. Clardy CW, Schroeder TJ, Myre SA, et al. Clinical variability of cyclosporine pharmacokinetics in adult and pediatric patients after renal, cardiac, hepatic, and bone-marrow transplants. Clin Chem 1988 Oct; 34(10): 2012–5

    PubMed  CAS  Google Scholar 

  49. Tan KK, Trull AK, Hue KL, et al. Pharmacokinetics of cyclosporine in heart and lung transplant candidates and recipients with cystic fibrosis and Eisenmenger’ syndrome. Clin Pharmacol Ther 1993 May; 53(5): 544–54

    Article  PubMed  CAS  Google Scholar 

  50. Kelman AW, Whiting B, Bryson SM. OPT: a package of computer programs for parameter optimisation in clinical pharmacokinetics. Br J Clin Pharmacol 1982 Aug; 14(2): 247–56

    Article  PubMed  CAS  Google Scholar 

  51. Mikhail G, Eadon H, Leaver N, et al. An investigation of the pharmacokinetics, toxicity, and clinical efficacy of Neoral cyclosporin in cystic fibrosis patients. Transplant Proc 1997 Feb; 29(1–2): 599–601

    Article  PubMed  CAS  Google Scholar 

  52. Tan KK, Trull AK, Uttridge JA, et al. Relative bioavailability of cyclosporin from conventional and microemulsion formulations in heart-lung transplant candidates with cystic fibrosis. Eur J Clin Pharmacol 1995; 48 (3–4): 285–9

    Google Scholar 

  53. Mathias HC, Ozalp F, Will MB, et al. A randomized, controlled trial of C0- versus C2-guided therapeutic drug monitoring of cyclosporine in stable heart transplant patients. J Heart Lung Transplant 2005 Dec; 24(12): 2137–43

    Article  PubMed  Google Scholar 

  54. Kahan BD, Keown P, Levy GA, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002 Mar; 24(3): 330–50

    Article  PubMed  CAS  Google Scholar 

  55. Dumont RJ, Ensom MH. Methods for clinical monitoring of cyclosporin in transplant patients. Clin Pharmacokinet 2000 May; 38(5): 427–47

    Article  PubMed  CAS  Google Scholar 

  56. Solari SG, Goldberg LR, DeNofrio D, et al. Cyclosporine monitoring with 2-hour postdose levels in heart transplant recipients. Ther Drug Monit 2005 Aug; 27(4): 417–21

    Article  PubMed  CAS  Google Scholar 

  57. Schubert S, Abdul-Khaliq H, Lehmkuhl HB, et al. Advantages of C2 monitoring to avoid acute rejection in pediatric heart transplant recipients. J Heart Lung Transplant 2006 Jun; 25(6): 619–25

    Article  PubMed  CAS  Google Scholar 

  58. Cantarovich M, Besner JG, Barkun JS, et al. Two-hour cyclosporine level determination is the appropriate tool to monitor Neoral therapy. Clin Transplant 1998 Jun; 12(3): 243–9

    PubMed  CAS  Google Scholar 

  59. International Neoral Renal Transplantation Study Group. Cyclosporine microemulsion (Neoral) absorption profiling and sparse-sample predictors during the first 3 months after renal transplantation. Am J Transplant 2002 Feb; 2(2): 148–56

    Article  Google Scholar 

  60. Ray JE, Keogh AM, McLachlan AJ, et al. Cyclosporin C(2) and C(0) concentration monitoring in stable, long-term heart transplant recipients receiving metabolic inhibitors. J Heart Lung Transplant 2003 Jul; 22(7): 715–22

    Article  PubMed  Google Scholar 

  61. Cantarovich M, Besner JG, Fitchett DH, et al. Efficacy and side-effects of cyclosporine dose monitoring with levels 6 h after the morning dose in heart transplant patients. Clin Transplant 1997 Oct; 11(5 Pt 1): 399–405

    PubMed  CAS  Google Scholar 

  62. Caruso R, Perico N, Cattaneo D, et al. Whole-blood calcineurin activity is not predicted by cyclosporine blood concentration in renal transplant recipients. Clin Chem 2001 Sep; 47(9): 1679–87

    PubMed  CAS  Google Scholar 

  63. Halloran PF, Helms LM, Kung L, et al. The temporal profile of calcineurin inhibition by cyclosporine in vivo. Transplantation 1999 Nov 15; 68(9): 1356–61

    Article  PubMed  CAS  Google Scholar 

  64. Kahan BD, Welsh M, Rutzky LP. Challenges in cyclosporine therapy: the role of therapeutic monitoring by area under the curve monitoring. Ther Drug Monit 1995 Dec; 17(6): 621–4

    Article  PubMed  CAS  Google Scholar 

  65. Keown P, Landsberg D, Halloran P, et al. A randomized, prospective multicenter pharmacoepidemiologic study of cyclosporine microemulsion in stable renal graft recipients: report of the Canadian Neoral Renal Transplantation Study Group. Transplantation 1996 Dec 27; 62(12): 1744–52

    Article  PubMed  CAS  Google Scholar 

  66. Mahalati K, Belitsky P, West K, et al. Approaching the therapeutic window for cyclosporine in kidney transplantation: a prospective study. J Am Soc Nephrol 2001 Apr; 12(4): 828–33

    PubMed  CAS  Google Scholar 

  67. David OJ, Johnston A, Cooney GF. Sparse sample measurement of cyclosporin AUC after Neoral® in heart transplant patients [abstract]. Ther Drug Monit 1999 Aug; 21(4): 447

    Google Scholar 

  68. Grevel J, Kahan BD. Abbreviated kinetic profiles in area-under-the-curve monitoring of cyclosporine therapy. Clin Chem 1991 Nov; 37(11): 1905–8

    PubMed  CAS  Google Scholar 

  69. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 1981 Aug; 9(4): 503–12

    Article  PubMed  CAS  Google Scholar 

  70. David OJ, Johnston A. Limited sampling strategies for estimating cyclosporin area under the concentration-time curve: review of current algorithms. Ther Drug Monit 2001 Apr; 23(2): 100–14

    Article  PubMed  CAS  Google Scholar 

  71. Leger F, Debord J, Le Meur Y, et al. Maximum a posteriori Bayesian estimation of oral cyclosporin pharmacokinetics in patients with stable renal transplants. Clin Pharmacokinet 2002; 41(1): 71–80

    Article  PubMed  CAS  Google Scholar 

  72. Rousseau A, Leger F, Le Meur Y, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit 2004 Feb; 26(1): 23–30

    Article  PubMed  CAS  Google Scholar 

  73. Bourgoin H, Paintaud G, Buchler M, et al. Bayesian estimation of cyclosporin exposure for routine therapeutic drug monitoring in kidney transplant patients. Br J Clin Pharmacol 2005 Jan; 59(1): 18–27

    Article  PubMed  Google Scholar 

  74. Irtan S, Saint-Marcoux F, Rousseau A, et al. Population pharmacokinetics and bayesian estimator of cyclosporine in pediatric renal transplant patients. Ther Drug Monit 2007 Feb; 29(1): 96–102

    Article  PubMed  CAS  Google Scholar 

  75. Parke J, Charles BG. Factors affecting oral cyclosporin disposition after heart transplantation: bootstrap validation of a population pharmacokinetic model. Eur J Clin Pharmacol 2000 Sep; 56(6–7): 481–7

    Article  PubMed  CAS  Google Scholar 

  76. Diciolla F, Scolletta S, Berti L, et al. C2 and C0 values for monitoring cyclosporine therapy in stable heart transplant recipients. Transplant Proc 2005 Mar; 37(2): 1355–9

    Article  PubMed  CAS  Google Scholar 

  77. Best NG, Trull AK, Tan KK, et al. Blood cyclosporin concentrations and the short-term risk of lung rejection following heart-lung transplantation. Br J Clin Pharmacol 1992 Dec; 34(6): 513–20

    Article  PubMed  CAS  Google Scholar 

  78. Monforte V, Bullich S, Pou L, et al. Blood cyclosporine C0 and C2 concentrations and cytomegalovirus infections following lung transplantation. Transplant Proc 2003 Aug; 35(5): 1992–3

    Article  PubMed  CAS  Google Scholar 

  79. Trull AK, Best NG, Tan KK, et al. Blood cyclosporin concentrations but not doses correlate with acute changes in renal function following heart and heart-lung transplantation. Ther Drug Monit 1992 Aug; 14(4): 275–80

    Article  PubMed  CAS  Google Scholar 

  80. Delgado DH, Rao V, Hamel J, et al. Monitoring of cyclosporine 2-hour post-dose levels in heart transplantation: improvement in clinical outcomes. J Heart Lung Transplant 2005 Sep; 24(9): 1343–6

    Article  PubMed  Google Scholar 

  81. Glanville AR, Aboyoun CL, Morton JM, et al. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant 2006 Aug; 25(8): 928–34

    Article  PubMed  Google Scholar 

  82. Morton JM, Aboyoun CL, Malouf MA, et al. Enhanced clinical utility of de novo cyclosporine C2 monitoring after lung transplantation. J Heart Lung Transplant 2004 Sep; 23(9): 1035–9

    Article  PubMed  Google Scholar 

  83. Glanville AR, Morton JM, Aboyoun CL, et al. Cyclosporine C2 monitoring improves renal dysfunction after lung transplantation. J Heart Lung Transplant 2004 Oct; 23(10): 1170–4

    Article  PubMed  Google Scholar 

  84. Nohria A, Ehtisham J, Ramahi TM. Optimum maintenance trough levels of cyclosporine in heart transplant recipients given corticosteroid-free regimen. J Heart Lung Transplant 1998 Sep; 17(9): 849–53

    PubMed  CAS  Google Scholar 

  85. El Gamel A, Keevil B, Rahman A, et al. Cardiac allograft rejection: do trough cyclosporine levels correlate with the grade of histologic rejection? J Heart Lung Transplant 1997 Mar; 16(3): 268–74

    PubMed  Google Scholar 

  86. Trull A, Hue K, Tan K, et al. Cross-correlation of cyclosporine concentrations and biochemical measures of kidney and liver function in heart and heart-lung transplant recipients. Clin Chem 1990 Aug; 36(8 Pt 1): 1474–8

    PubMed  CAS  Google Scholar 

  87. Aumente MD, Arizón JM, Segura J, et al. Relationship between pharmacokinetic parameters of cyclosporin and the incidence of acute rejection after heart transplantation. Transplant Proc 2005 Nov; 37(9): 4014–7

    Article  PubMed  CAS  Google Scholar 

  88. Levy G, Burra P, Cavallari A, et al. Improved clinical outcomes for liver transplant recipients using cyclosporine monitoring based on 2-hr post-dose levels (C2). Transplantation 2002 Mar 27; 73(6): 953–9

    Article  PubMed  CAS  Google Scholar 

  89. Stefoni S, Midtved K, Cole E, et al. Efficacy and safety outcomes among de novo renal transplant recipients managed by C2 monitoring of cyclosporine a microemulsion: results of a 12-month, randomized, multicenter study. Transplantation 2005 Mar 15; 79(5): 577–83

    Article  PubMed  CAS  Google Scholar 

  90. Thervet E, Pfeffer P, Scolari MP, et al. Clinical outcomes during the first three months posttransplant in renal allograft recipients managed by C2 monitoring of cyclosporine microemulsion. Transplantation 2003 Sep 27; 76(6): 903–8

    Article  PubMed  CAS  Google Scholar 

  91. Baraldo M, Francesconi A, Barbone F, et al. C(2) monitoring of cyclosporine in stable heart transplant patients after two daily and three daily doses. Transplant Proc 2002 Dec; 34(8): 3246–8

    Article  PubMed  CAS  Google Scholar 

  92. Caforio AL, Tona F, Piaserico S, et al. C2 is superior to C0 as predictor of renal toxicity and rejection risk profile in stable heart transplant recipients. Transpl Int 2005 Jan; 18(1): 116–24

    Article  PubMed  Google Scholar 

  93. Cantarovich M, Quantz M, Elstein E, et al. Neoral dose monitoring with cyclosporine 2-hour postdose levels in heart transplant patients receiving anti-thymocyte globulin induction. Transplant Proc 2000 Mar; 32(2): 446–8

    Article  PubMed  CAS  Google Scholar 

  94. Cantarovich M, Giannetti N, Cecere R. Relationship between endomyocardial biopsy score and cyclosporine 2-h post-dose levels (C) in heart transplant patients receiving anti-thymocyte globulin induction. Clin Transplant 2004 Apr; 18(2): 148–51

    Article  PubMed  Google Scholar 

  95. Cantarovich M, Ross H, Arizón JM, et al. Benefit of Neoral C2 monitoring in de novo cardiac transplant recipients receiving basiliximab induction. Transplantation 2008 Apr 15; 85(7): 992–9

    Article  PubMed  CAS  Google Scholar 

  96. Briffa N, Morris RE. New immunosuppressive regimens in lung transplantation. Eur Respir J 1997 Nov; 10(11): 2630–7

    Article  PubMed  CAS  Google Scholar 

  97. Taylor DO, Barr ML, Meiser BM, et al. Suggested guidelines for the use of tacrolimus in cardiac transplant recipients. J Heart Lung Transplant 2001 Jul; 20(7): 734–8

    Article  PubMed  CAS  Google Scholar 

  98. Treede H, Klepetko W, Reichenspurner H, et al. Tacrolimus versus cyclosporine after lung transplantation: a prospective, open, randomized two-center trial comparing two different immunosuppressive protocols. J Heart Lung Transplant 2001 May; 20(5): 511–7

    Article  PubMed  CAS  Google Scholar 

  99. Reichenspurner H. Overview of tacrolimus-based immunosuppression after heart or lung transplantation. J Heart Lung Transplant 2005 Feb; 24(2): 119–30

    Article  PubMed  Google Scholar 

  100. Garrity Jr ER, Hertz MI, Trulock EP, et al. Suggested guidelines for the use of tacrolimus in lung-transplant recipients. J Heart Lung Transplant 1999 Mar; 18(3): 175–6

    Article  PubMed  Google Scholar 

  101. Reichenspurner H, Kur F, Treede H, et al. Optimization of the immunosuppressive protocol after lung transplantation. Transplantation 1999; 68(1): 67–71

    Article  PubMed  CAS  Google Scholar 

  102. Undre NA, Schafer A. Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation. European Tacrolimus Multicentre Renal Study Group. Transplant Proc 1998 Jun; 30(4): 1261–3

    Article  PubMed  CAS  Google Scholar 

  103. Staatz C, Tett S. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ. Clin Pharmacokinet 2004; 43(10): 623–53

    Article  PubMed  CAS  Google Scholar 

  104. Regazzi M, Rinaldi M, Molinaro M, et al. Clinical pharmacokinetics of tacrolimus in heart transplant recipients. Ther Drug Monit 1999; 21(1): 2–7

    Article  PubMed  CAS  Google Scholar 

  105. Undre NA, Stevenson PJ. Pharmacokinetics of tacrolimus in heart transplantation. Transplant Proc 2002 Aug; 34(5): 1836–8

    Article  PubMed  CAS  Google Scholar 

  106. Molinaro M, Regazzi MB, Pasquino S, et al. Pharmacokinetics of tacrolimus during the early phase after heart transplantation. Transplant Proc 2001 May; 33(3): 2386–9

    Article  PubMed  CAS  Google Scholar 

  107. Sgrosso JL, Araujo GL, Vazquez MC. Tacrolimus pharmacokinetics in heart transplant. Transplant Proc 2002 Feb; 34(1): 142–3

    Article  PubMed  CAS  Google Scholar 

  108. Aumente Rubio MD, Arizón del Prado JM, López Malo de Molina MD, et al. Clinical pharmacokinetics of tacrolimus in heart transplantation: new strategies of monitoring. Transplant Proc 2003 Aug; 35(5): 1988–91

    Article  PubMed  CAS  Google Scholar 

  109. Aidong W, Zhenjie C, Tong L, et al. Therapeutic drug monitoring of tacrolimus in early stage after heart transplantation. Transplant Proc 2004 Oct; 36(8): 2388–9

    Article  PubMed  CAS  Google Scholar 

  110. Morton JM, Kear LM, Williamson S, et al. Trough levels are inadequate for monitoring tacrolimus pharmacokinetics in lung transplantation [abstract no. 248]. J Heart Lung Transplant 2002 Jan; 21(1): 144

    Article  Google Scholar 

  111. Saint-Marcoux F, Knoop C, Debord J, et al. Pharmacokinetic study of tacrolimus in cystic fibrosis and non-cystic fibrosis lung transplant patients and design of Bayesian estimators using limited sampling strategies. Clin Pharmacokinet 2005; 44(12): 1317–28

    Article  PubMed  CAS  Google Scholar 

  112. Wang CH, Ko WJ, Chou NK, et al. Therapeutic drug monitoring of tacrolimus in cardiac transplant recipients: a comparison with cyclosporine neoral. Transplant Proc 2004 Oct; 36(8): 2386–7

    Article  PubMed  CAS  Google Scholar 

  113. Undre NA, Schafer A. Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation. European Tacrolimus Multicentre Renal Study Group. Transplant Proc 1998 Jun; 30(4): 1261–3

    Article  PubMed  CAS  Google Scholar 

  114. Napoli KL. Is microparticle enzyme-linked immunoassay (MEIA) reliable for use in tacrolimus TDM? Comparison of MEIA to liquid chromatography with mass spectrometric detection using longitudinal trough samples from transplant recipients. Ther Drug Monit 2006 Aug; 28(4): 491–504

    Article  PubMed  CAS  Google Scholar 

  115. Brown NW, Gonde CE, Adams JE, et al. Low hematocrit and serum albumin concentrations underlie the overestimation of tacrolimus concentrations by microparticle enzyme immunoassay versus liquid chromatography-tandem mass spectrometry. Clin Chem 2005 Mar; 51(3): 586–92

    Article  PubMed  CAS  Google Scholar 

  116. Knoop C, Thiry P, Saint-Marcoux F, et al. Tacrolimus pharmacokinetics and dose monitoring after lung transplantation for cystic fibrosis and other conditions. Am J Transplant 2005 Jun; 5(6): 1477–82

    Article  PubMed  CAS  Google Scholar 

  117. Lemahieu W, Maes B, Verbeke K, et al. Cytochrome P450 3A4 and P-glycoprotein activity and assimilation of tacrolimus in transplant patients with persistent diarrhea. Am J Transplant 2005 Jun; 5(6): 1383–91

    Article  PubMed  CAS  Google Scholar 

  118. Shitrit D, Ollech JE, Ollech A, et al. Itraconazole prophylaxis in lung transplant recipients receiving tacrolimus (FK 506): efficacy and drug interaction. J Heart Lung Transplant 2005 Dec; 24(12): 2148–52

    Article  PubMed  Google Scholar 

  119. Walker S, Habib S, Rose M, et al. Clinical use and bioavailability of tacrolimus in heart-lung and double lung transplant recipients with cystic fibrosis. Transplant Proc 1998 Jun; 30(4): 1519–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Limoges University Hospital and the French Patients’ Association ‘Vaincre la Mucoviscidose’ [Win against Cystic Fibrosis]. Pierre Marquet has received consultancies and honoraria from Roche and Novartis and research grants from Roche, Novartis and Astellas. Caroline Monchaud has no conflicts of interest that are directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Marquet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monchaud, C., Marquet, P. Pharmacokinetic Optimization of Immunosuppressive Therapy in Thoracic Transplantation: Part I. Clin Pharmacokinet 48, 419–462 (2009). https://doi.org/10.2165/11317230-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11317230-000000000-00000

Keywords

Navigation