Skip to main content
Log in

Dyskeratosis Congenita: A Disorder of Defective Telomere Maintenance?

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Dyskeratosis congenita (DC) is a rare multisystem bone marrow failure syndrome that displays marked clinical and genetic heterogeneity. X-linked recessive, autosomal dominant and autosomal recessive forms of the disease are recognized. The gene that is mutated in the X-linked form of the disease is DKC1. The DKC1 -encoded protein, dyskerin, is a component of small nucleolar ribonucleoprotein particles, which are important in ribosomal RNA processing, and of the telomerase complex. The autosomal dominant form of DC is due to mutations in the gene for the RNA component of telomerase (TERC). Because both dyskerin and TERC are components of the telomerase complex and all patients with DC have short telomeres, the principal pathology of DC appears to relate to telomerase dysfunction, although defects in ribosomal processing via dyskerin’s involvement in pseudouridylation cannot be completely ruled out. The gene or genes involved in autosomal recessive DC remain elusive, although genes whose products are required for telomere maintenance remain strong candidates. The study of DC highlights the importance of telomerase in humans and how its deficiency results in multiple abnormalities, including premature aging, bone marrow failure, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Broccoli D. Function, replication and structure of the mammalian telomere. Cytotechnology. 2004;45:3–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Blackburn EH. The end of the (DNA) line. Nat Struct Biol. 2000;7:847–850.

    PubMed  CAS  Google Scholar 

  3. Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002;66:407–425.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. De Lange T. Protection of mammalian telomeres. Oncogene. 2002;21:532–540.

    PubMed  CAS  Google Scholar 

  5. Autexier C, Greider CW. Functional reconstitution of wild-type and mutant Tetrahymena telomerase. Genes Dev. 1994;8:563–575.

    PubMed  CAS  Google Scholar 

  6. Pogacic V, Dragon F, Filipowicz W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol Cell Biol. 2000;20:9028–9040.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Dragon F, Pogacic V, Filipowicz W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol Cell Biol. 2000;20:3037–3048.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Karlseder J. Telomere repeat binding factors: keeping the ends in check. Cancer Lett. 2003;194:189–197.

    PubMed  CAS  Google Scholar 

  9. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell. 2003;114:241–253.

    PubMed  CAS  Google Scholar 

  10. Wong JM, Collins K. Telomere maintenance and disease. Lancet. 2003;362:983–988.

    PubMed  CAS  Google Scholar 

  11. Colgin LM, Reddel RR. Telomere maintenance mechanisms and cellular immortalization. Curr Opin Genet Dev. 1999;9:97–103.

    PubMed  CAS  Google Scholar 

  12. Broccoli D, Young JW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc NatlAcad Sci USA. 1995;92:9082–9086.

    CAS  Google Scholar 

  13. Chiu CP, Dragowska W, Kim NW, et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells. 1996;14:239–248.

    PubMed  CAS  Google Scholar 

  14. Harle-Bachor C, Boukamp P. Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci USA. 1996;93:6476–6481.

    PubMed  CAS  Google Scholar 

  15. Yasumoto S, Kunimura C, Kikuchi K, et al. Telomerase activity in normal human epithelial cells. Oncogene. 1996;13:433–439.

    PubMed  CAS  Google Scholar 

  16. Zinsser F. Atropha cutis reticularis cum pigmentatione, dystrophia ungium et leukoplakia oris. Ikonogr Dermatol (Hyoto). 1906;5:219–223.

    Google Scholar 

  17. Engman MF. A unique case of reticular pigmentation of the skin with atrophy. Arch Dermatol Syph. 1926;13:685–687.

    Google Scholar 

  18. Cole HN, Rauschkolb JC, Toomey J. Dyskeratosis congenita with pigmentation, dystrophia unguis and leukokeratosis oris. Arch Dermatol Syph. 1930;21:71–95.

    Google Scholar 

  19. Sirinavin C, Trowbridge AA. Dyskeratosis congenita: clinical features and genetic aspects: report of a family and review of the literature. J Med Genet. 1975;12:339–354.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Drachtman RA, Alter BP. Dyskeratosis congenita. Dermatol Clin. 1995;13:33–39.

    PubMed  CAS  Google Scholar 

  21. Knight S, Vulliamy T, Copplestone A, Gluckman E, Mason P, Dokal I. Dyskeratosis Congenita (DC) Registry: identification of new features of DC. Br J Haematol. 1998;103:990–996.

    PubMed  CAS  Google Scholar 

  22. Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol. 2000;110:768–779.

    PubMed  CAS  Google Scholar 

  23. Heiss NS, Knight SW, Vulliamy TJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998;19:32–38.

    PubMed  CAS  Google Scholar 

  24. Vulliamy T, Marrone A, Goldman F, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature. 2001;413:432–435.

    PubMed  CAS  Google Scholar 

  25. Meier UT, Blobel G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Biol. 1994;127:1505–1514.

    PubMed  CAS  Google Scholar 

  26. Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997;9:337–342.

    PubMed  CAS  Google Scholar 

  27. Filipowicz W, Pogacic V. Biogenesis of small nucleolar ribonucleo-proteins. Curr Opin Cell Biol. 2002;14:319–327.

    PubMed  CAS  Google Scholar 

  28. Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H+ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998;12:527–537.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Zebarjadian Y, King T, Fournier MJ, Clarke L, Carbon J. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol Cell Biol. 1999;19:7461–7472.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gelugne JP, Caizergues-Ferrer M. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 1998;17:7078–7090.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Henras AK, Capeyrou R, Henry Y, Caizergues-Ferrer M. Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA. 2004;10:1704–1712.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang C, Meier UT. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 2004;23:1857–1867.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Meier UT. The many facets of H/ACA ribonucleoproteins. Chro-mosoma. 2005;114:1–14.

    CAS  Google Scholar 

  34. Luzzatto L, Karadimitris A. Dyskeratosis and ribosomal rebellion. Nat Genet. 1998;19:6–7.

    PubMed  CAS  Google Scholar 

  35. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999;402:551–555.

    PubMed  CAS  Google Scholar 

  36. Mitchell JR, Cheng J, Collins K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol. 1999;19:567–576.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Vulliamy TJ, Knight SW, Mason PJ, Dokal I. Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cells Mol Dis. 2001;27:353–357.

    PubMed  CAS  Google Scholar 

  38. Mochizuki Y, He J, Kulkarni S, Bessler M, Mason PJ. Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proc NatlAcad Sci USA. 2004;101:10756–10761.

    CAS  Google Scholar 

  39. Marrone A, Dokal I. Dyskeratosis congenita: molecular insights into telomerase function, ageing and cancer. Expert Rev Mol Med. 2004;6:1–23.

    PubMed  Google Scholar 

  40. Kanegane H, Kasahara Y, Okamura J, et al. Identification of DKC1 gene mutations in Japanese patients with X-linked dyskeratosis congenita. Br J Haematol. 2005;129:432–434.

    PubMed  CAS  Google Scholar 

  41. Knight SW, Heiss NS, Vulliamy TJ, et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet. 1999;65:50–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Zucchini C, Strippoli P, Biolchi A, et al. The human TruB family of pseudouridine synthase genes, including the Dyskeratosis Congenita 1 gene and the novel member TRUB1. Int J Mol Med. 2003;11:697–704.

    PubMed  CAS  Google Scholar 

  43. Ramamurthy V, Swann SL, Paulson JL, Spedaliere CJ, Mueller EG. Critical aspartic acid residues in pseudouridine synthases. J Biol Chem. 1999;274:22225–22230.

    PubMed  CAS  Google Scholar 

  44. Knight SW, Vulliamy TJ, Morgan B, Devriendt K, Mason PJ, Dokal I. Identification of novel DKC1 mutations in patients with dyskeratosis congenita: implications for pathophysiology and diagnosis. Hum Genet. 2001;108:299–303.

    PubMed  CAS  Google Scholar 

  45. Fu D, Collins K. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol Cell. 2003;11:1361–1372.

    PubMed  CAS  Google Scholar 

  46. Ren X, Gavory G, Li H, Ying L, Klenerman D, Balasubramanian S. Identification of a new RNA·RNA interaction site for human telomerase RNA (hTR): structural implications for hTR accumulation and a dyskeratosis congenita point mutation. Nucleic Acids Res. 2003;31:6509–6515.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Ueda CT, Roberts RW. Analysis of a long-range interaction between conserved domains of human telomerase RNA. RNA. 2004;10:139–147.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Keppler BR, Jarstfer MB. Inhibition of telomerase activity by preventing proper assemblage. Biochemistry. 2004;43:334–343.

    PubMed  CAS  Google Scholar 

  49. Marrone A, Stevens D, Vulliamy T, Dokal I, Mason PJ. Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsuffi-ciency. Blood. 2004;104:3936–3942.

    PubMed  CAS  Google Scholar 

  50. Cerone MA, Ward RJ, Londono-Vallejo JA, Autexier C. Telomerase RNA mutated in autosomal dyskeratosis congenita reconstitutes a weakly active telomerase enzyme defective in telomere elongation. Cell Cycle. 2005;4:585–589.

    PubMed  CAS  Google Scholar 

  51. Yeo M, Rha SY, Jeung HC, et al. Different role of functional domains of hTR in DNA binding to telomere and telomerase reconstruction. FEBS Lett. 2005;579:127–132.

    PubMed  CAS  Google Scholar 

  52. Yingling YG, Shapiro BA. Dynamic behaviour of the telomerase RNA hairpin structure and its relationship to dyskeratosis congenita. J Mol Biol. 2005;348:27–42.

    PubMed  CAS  Google Scholar 

  53. Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet. 2004;36:447–449.

    PubMed  CAS  Google Scholar 

  54. Shay JW, Wright WE. Telomeres in dyskeratosis congenita. Nat Genet. 2004;36:437–438.

    PubMed  CAS  Google Scholar 

  55. Ball SE, Gibson FM, Rizzo S, Tooze JA, Marsh JC, Gordon-Smith EC. Progressive telomere shortening in aplastic anemia. Blood. 1998;91:3582–3592.

    PubMed  CAS  Google Scholar 

  56. Brummendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood. 2001;97:895–900.

    PubMed  CAS  Google Scholar 

  57. Karadimitris A, Araten DJ, Luzzatto L, Notaro R. Severe telomere shortening in patients with paroxysmal nocturnal hemoglobinuria affects both GPI- and GPI+ hematopoiesis. Blood. 2003;102:514–516.

    PubMed  CAS  Google Scholar 

  58. Vulliamy T, Marrone A, Dokal I, Mason PJ. Association between aplastic anaemia and mutations in telomerase RNA. Lancet. 2002;359:2168–2170.

    PubMed  CAS  Google Scholar 

  59. Fogarty PF, Yamaguchi H, Wiestner A, et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet. 2003;362:1628–1630.

    PubMed  CAS  Google Scholar 

  60. Yamaguchi H, Baerlocher GM, Lansdorp PM, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003;102:916–918.

    PubMed  CAS  Google Scholar 

  61. Keith WN, Vulliamy T, Zhao J, et al. A mutation in a functional Sp1 binding site of the telomerase RNA gene (hTERC) promoter in a patient with paroxysmal nocturnal haemoglobinuria. BMC Blood Disord. 2004;4:3.

    PubMed  PubMed Central  Google Scholar 

  62. Knight SW, Heiss NS, Vulliamy TJ, et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal- Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br J Haematol. 1999;107:335–339.

    PubMed  CAS  Google Scholar 

  63. Yaghmai R, Kimyai-Asadi A, Rostamiani K, et al. Overlap of dyskeratosis congenita with the Hoyeraal-Hreidarsson syndrome. J Pediatr. 2000;136:390–393.

    PubMed  CAS  Google Scholar 

  64. Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis. 2005;34:257–263.

    PubMed  CAS  Google Scholar 

  65. Yamaguchi H, Calado RT, Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352:1413–1424.

    PubMed  CAS  Google Scholar 

  66. Holt SE, Aisner DL, Baur J, et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 1999;13:817–826.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. Walne.

About this article

Cite this article

Walne, A.J., Marrone, A. & Dokal, I. Dyskeratosis Congenita: A Disorder of Defective Telomere Maintenance?. Int J Hematol 82, 184–189 (2005). https://doi.org/10.1532/IJH97.05067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.05067

Key words

Navigation