Skip to main content

Advertisement

Log in

Small Molecule Tyrosine Kinase Inhibitors in the Treatment of Solid Tumors: An Update of Recent Developments

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Small molecule tyrosine kinase inhibitors (TKIs) are developed to block intracellular signaling pathways in tumor cells, leading to deregulation of key cell functions such as proliferation and differentiation. Over 25 years ago, tyrosine kinases were found to function as oncogenes in animal carcinogenesis; however, only recently TKIs were introduced as anti cancer drugs in human cancer treatment. Tyrosine kinase inhibitors have numerous good qualities. First, in many tumor types they tend to stabilize tumor progression and may create a chronic disease state which is no longer immediately life threatening. Second, side effects are minimal when compared to conventional chemotherapeutic agents. Third, synergistic effects are seen in vitro when TKIs are combined with radiotherapy and/or conventional chemotherapeutic agents. In this article, we will give an update of the tyrosine kinase inhibitors that are currently registered for use or in an advanced stage of development, and we will discuss the future role of TKIs in the treatment of solid tumors. The following TKIs are reviewed: Imatinib (Gleevec/Glivec), Gefitinib (Iressa), Erlotinib (OSI-774, Tarceva), Lapatinib (GW-572016, Tykerb), Canertinib (CI-1033), Sunitinib (SU 11248, Sutent), Zactima (ZD6474), Vatalanib (PTK787/ZK 222584), Sorafenib (Bay 43-9006, Nexavar), and Leflunomide (SU101, Arava).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.

Similar content being viewed by others

References

  1. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353:172–187

    Article  PubMed  CAS  Google Scholar 

  2. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 2005; 315:971–979

    Article  PubMed  CAS  Google Scholar 

  3. Cross SS. The molecular pathology of new anti-cancer agents. Current Diagnostic Pathology 2005; 11:329–339

    Google Scholar 

  4. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103:211–225

    Article  PubMed  CAS  Google Scholar 

  5. Madhusudan S, Ganesan TS. Tyrosine kinase inhibitors in cancer therapy. Clin Biochem 2004; 37:618–635

    Article  PubMed  CAS  Google Scholar 

  6. Druker BJ. Imatinib and chronic myeloid leukemia: validating the promise of molecularly targeted therapy. Eur J Cancer 2002; 38 Suppl 5:S70–S76

    Article  PubMed  Google Scholar 

  7. van Oosterom AT, Judson IR, Verweij J, et al. Update of phase I study of imatinib (STI571) in advanced soft tissue sarcomas and gastrointestinal stromal tumors: a report of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2002; 38 Suppl 5:S83–S87

    Article  PubMed  Google Scholar 

  8. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002; 347:472–480

    Article  PubMed  CAS  Google Scholar 

  9. Rubin BP, Singer S, Tsao C, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001; 61:8118–8121

    PubMed  CAS  Google Scholar 

  10. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21:4342–4349

    Article  PubMed  CAS  Google Scholar 

  11. Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004; 364:1127–1134

    Article  PubMed  CAS  Google Scholar 

  12. Rubin BP. Gastrointestinal stromal tumours: an update. Histopathology 2006; 48:83–96

    Article  PubMed  CAS  Google Scholar 

  13. McArthur GA, Demetri GD, van Oosterom A, et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol 2005; 23:866–873

    Article  PubMed  CAS  Google Scholar 

  14. Sawyers CL. Imatinib GIST keeps finding new indications: successful treatment of dermatofibrosarcoma protuberans by targeted inhibition of the platelet-derived growth factor receptor. J Clin Oncol 2002; 20:3568–3569

    PubMed  Google Scholar 

  15. Heinrich MC, McArthur GA, Demetri GD, et al. Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J Clin Oncol 2006; 24:1195–1203

    Article  PubMed  CAS  Google Scholar 

  16. Chugh R, Maki RG, Thomas DG, et al. A SARC phase II multicenter trial of imatinib mesylate (IM) in patients with aggressive fibromatosis. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 9515 2006; 24

    Google Scholar 

  17. Casali PG, Messina A, Stacchiotti S, et al. Imatinib mesylate in chordoma. Cancer 2004; 101:2086–2097

    Article  PubMed  CAS  Google Scholar 

  18. Kilic T, Alberta JA, Zdunek PR, et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 2000; 60:5143–5150

    PubMed  CAS  Google Scholar 

  19. Reardon DA, Egorin MJ, Quinn JA, et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 2005; 23:9359–9368

    Article  PubMed  CAS  Google Scholar 

  20. Marosi C, Vedadinejad M, Haberler C, Hainfellner JA, Dieckmann K, Rössler K, Hassler MR. Imatinib mesylate in the treatment of patients with recurrent high grade gliomas expressing PDGF-R. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 1526 2006; 24

    Google Scholar 

  21. Desjardins A, Reardon DA, Quinn JA, et al. Phase II trial of imatinib mesylate and hydroxyurea for grade III malignant gliomas. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 1573 2006; 24

    Google Scholar 

  22. Wang WL, Healy ME, Sattler M, et al. Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene 2000; 19:3521–3528

    Article  PubMed  CAS  Google Scholar 

  23. Johnson BE, Fischer T, Fischer B, et al. Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res 2003; 9:5880–5887

    PubMed  CAS  Google Scholar 

  24. Raspollini MR, Amunni G, Villanucci A, Pinzani P, Simi L, Paglierani M, Taddei GL. c-Kit expression in patients with uterine leiomyosarcomas: a potential alternative therapeutic treatment. Clin Cancer Res 2004; 10:3500–3503

    Article  PubMed  CAS  Google Scholar 

  25. Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 2001; 19:32S–40S

    PubMed  CAS  Google Scholar 

  26. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244:707–712

    Article  PubMed  CAS  Google Scholar 

  27. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19:183–232

    Article  PubMed  CAS  Google Scholar 

  28. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J Clin Oncol 2003; 21:2237–2246

    Article  PubMed  CAS  Google Scholar 

  29. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003; 290:2149–2158

    Article  PubMed  CAS  Google Scholar 

  30. Bell DW, Lynch TJ, Haserlat SM, et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 2005; 23:8081–8092

    Article  PubMed  CAS  Google Scholar 

  31. Nagaria NC, Cogswell J, Choe JK, Kasimis B. Side effects and good effects from new chemotherapeutic agents. Case 1. Gefitinib-induced interstitial fibrosis. J Clin Oncol 2005; 23:2423–2424

    Article  PubMed  Google Scholar 

  32. Takano T, Ohe Y, Kusumoto M, et al. Risk factors for interstitial lung disease and predictive factors for tumor response in patients with advanced non-small cell lung cancer treated with gefitinib. Lung Cancer 2004; 45:93–104

    Article  PubMed  Google Scholar 

  33. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 1. J Clin Oncol 2004; 22:777–784

    Article  PubMed  CAS  Google Scholar 

  34. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 2. J Clin Oncol 2004; 22:785–794

    Article  PubMed  CAS  Google Scholar 

  35. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005; 366:1527–1537

    Article  PubMed  CAS  Google Scholar 

  36. Kim YH, Ishii G, Goto K, et al. Dominant papillary subtype is a significant predictor of the response to gefitinib in adenocarcinoma of the lung. Clin Cancer Res 2004; 10:7311–7317

    Article  PubMed  CAS  Google Scholar 

  37. Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non–small-cell lung cancer. J Clin Oncol 2004; 22:3238–3247

    Article  PubMed  CAS  Google Scholar 

  38. Nakamura H, Kawasaki N, Taguchi M, Kabasawa K. Survival impact of epidermal growth factor receptor overexpression in patients with non-small cell lung cancer: a meta-analysis. Thorax 2006; 61:140–145

    Article  PubMed  CAS  Google Scholar 

  39. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  40. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  41. Tokumo M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res 2005; 11:1167–1173

    PubMed  CAS  Google Scholar 

  42. Cappuzzo F, Finocchiaro G, Metro G, et al. Clinical experience with gefitinib: an update. Crit Rev Oncol Hematol 2006; 58:31–45

    Article  PubMed  Google Scholar 

  43. Adelstein DJ, Rybicki LA, Carroll MA, Rice TW, Mekhail T. Phase II trial of gefitinib for recurrent or metastatic esophageal or gastroesophageal junction (GEJ) cancer. 2005 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 4054 2005; 23

    Google Scholar 

  44. Van Groeningen C, Richel D, Giaccone G. Gefitinib phase II study in second-line treatment of advanced esophageal cancer. 2004 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 4022 2004; 22

    Google Scholar 

  45. Ferry DR, Anderson M, Beddows K, Mayer P, Price L, Jankowski J. Phase II trial of gefitinib (ZD1839) in advanced adenocarcinoma of the oesophagus incorporating biopsy before and after gefitinib. 2004 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 4021 2004; 22

    Google Scholar 

  46. Pautier P, Joly F, Kerbrat P, et. al. Preliminary results of a phase II study to evaluate gefitinib (ZD1839) combined with paclitaxel (P) and carboplatin (C) as second-line therapy in patients (pts) with ovarian carcinoma (OC). 2004 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 5015 2004; 22

  47. Ciardiello F, Troiani T, Caputo F, et al. Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer. Br J Cancer 2006; 94:1604–1609

    PubMed  CAS  Google Scholar 

  48. Cohen EE, Rosen F, Stadler WM, Recant W, Stenson K, Huo D, Vokes EE. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 2003; 21:1980–1987

    Article  PubMed  CAS  Google Scholar 

  49. Kuo T, Cho CD, Halsey J, et al. Phase II study of gefitinib, fluorouracil, leucovorin, and oxaliplatin therapy in previously treated patients with metastatic colorectal cancer. J Clin Oncol 2005; 23:5613–5619

    Article  PubMed  CAS  Google Scholar 

  50. Schilder RJ, Sill MW, Chen X, et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res 2005; 11:5539–5548

    Article  PubMed  CAS  Google Scholar 

  51. Jermann M, Stahel RA, Salzberg M, et al. A phase II, open-label study of gefitinib (IRESSA) in patients with locally advanced, metastatic, or relapsed renal-cell carcinoma. Cancer Chemother Pharmacol 2006; 57:533–539

    Article  PubMed  CAS  Google Scholar 

  52. Rothenberg ML, LaFleur B, Levy DE, et al. Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. J Clin Oncol 2005; 23:9265–9274

    Article  PubMed  CAS  Google Scholar 

  53. Canil CM, Moore MJ, Winquist E, et al. Randomized phase II study of two doses of gefitinib in hormone-refractory prostate cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group. J Clin Oncol 2005; 23:455–460

    Article  PubMed  CAS  Google Scholar 

  54. Saltz LB, Meropol NJ, Loehrer PJ, Sr., Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004; 22:1201–1208

    Article  PubMed  CAS  Google Scholar 

  55. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351:337–345

    Article  PubMed  CAS  Google Scholar 

  56. Fisher GA, Kuo T, Cho CD, et al. A phase II study of gefitinib in combination with FOLFOX-4 (IFOX) in patients with metastatic colorectal cancer. 2004 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 3514 2004; 22

    Google Scholar 

  57. Herbst RS. Erlotinib (Tarceva): an update on the clinical trial program. Semin Oncol 2003; 30:34–46

    PubMed  CAS  Google Scholar 

  58. Tang PA, Tsao MS, Moore MJ. A review of erlotinib and its clinical use. Expert Opin Pharmacother 2006; 7:177–193

    Article  PubMed  CAS  Google Scholar 

  59. Perez-Soler R. Phase II clinical trial data with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer. Clin Lung Cancer 2004; 6 Suppl 1:S20–S23

    Article  PubMed  Google Scholar 

  60. Shepherd FA, Rodrigues PJ, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 353:123–132

    Article  PubMed  CAS  Google Scholar 

  61. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005; 23:5892–5899

    Article  PubMed  CAS  Google Scholar 

  62. Fuster LM, Sandler AB. Select clinical trials of erlotinib (OSI-774) in non-small-cell lung cancer with emphasis on phase III outcomes. Clin Lung Cancer 2004; 6 (Suppl 1):S24–S29

    Article  PubMed  Google Scholar 

  63. Moore MJ. Brief communication: a new combination in the treatment of advanced pancreatic cancer. Semin Oncol 2005; 32:5–6

    Article  PubMed  CAS  Google Scholar 

  64. Philip PA, Mahoney MR, Allmer C, et al. Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol 2006; 24:3069–3074

    Article  PubMed  CAS  Google Scholar 

  65. Philip PA, Mahoney MR, Allmer C, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 2005; 23:6657–6663

    Article  PubMed  CAS  Google Scholar 

  66. Meyerhardt JA, Zhu AX, Enzinger PC, et al. Phase II study of capecitabine, oxaliplatin, and erlotinib in previously treated patients with metastastic colorectal cancer. J Clin Oncol 2006; 24:1892–1897

    Article  PubMed  CAS  Google Scholar 

  67. Townsley CA, Major P, Siu LL, et al. Phase II study of erlotinib (OSI-774) in patients with metastatic colorectal cancer. Br J Cancer 2006; 94:1136–1143

    Article  PubMed  CAS  Google Scholar 

  68. Hainsworth JD, Sosman JA, Spigel DR, Edwards DL, Baughman C, Greco A. Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol 2005; 23:7889–7896

    Article  PubMed  CAS  Google Scholar 

  69. U.S.Food and Drug Administration. Tarceva® (erlotinib tablets). (2004) Washington, DC: US Government Printing Office; 1–21

    Google Scholar 

  70. U.S.Food and Drug Administration. Iressa® (gefitinib tablets). (2003) Washington, DC: US Government Printing Office; 1–15

    Google Scholar 

  71. Nelson MH, Dolder CR. Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother 2006; 40:261–269

    Article  PubMed  CAS  Google Scholar 

  72. Burris HA, III, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005; 23:5305–5313

    Article  PubMed  CAS  Google Scholar 

  73. Fields ALA, Rinaldi DA, Henderson CA, et al. An open-label multicenter phase II study of oral lapatinib (GW572016) as single agent, second-line therapy in patients with metastatic colorectal cancer. 2005 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 3583 2005; 23

    Google Scholar 

  74. Geyer CE. A Phase III Randomized, Open-Label, International Study Comparing Lapatinib and Capecitabine vs. Capecitabine in Women with Refractory Advanced or Metastatic Breast Cancer (EGF100151). Late-breaking abstract presented June 3, 2006, at the ASCO Annual Meeting. Journal of Clinical Oncology 2006

  75. Ravaud A, Gardner J, Hawkins R, et al. Efficacy of lapatinib in patients with high tumor EGFR expression: Results of a phase III trial in advanced renal cell carcinoma (RCC). 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 4502 2006; 24

    Google Scholar 

  76. Nemunaitis J, Eiseman I, Cunningham C, et al. Phase 1 clinical and pharmacokinetics evaluation of oral CI-1033 in patients with refractory cancer. Clin Cancer Res 2005; 11:3846–3853

    Article  PubMed  CAS  Google Scholar 

  77. Campos S, Hamid O, Seiden MV, et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol 2005; 23:5597–5604

    Article  CAS  Google Scholar 

  78. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002; 20:4368–4380

    Article  PubMed  CAS  Google Scholar 

  79. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407:249–257

    Article  PubMed  CAS  Google Scholar 

  80. Zogakis TG, Libutti SK. General aspects of anti-angiogenesis and cancer therapy. Expert Opin Biol Ther 2001; 1:253–275

    Article  PubMed  CAS  Google Scholar 

  81. Motzer RJ, Michaelson MD, Redman BG, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24:16–24

    Article  PubMed  CAS  Google Scholar 

  82. Motzer RJ, Rini BI, Bukowski RM, et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA 2006; 295:2516–2524

    Article  PubMed  CAS  Google Scholar 

  83. Motzer RJ, Hutson TE, Tomczak P, et al. Phase III randomized trial of sunitinib malate (SU11248) versus interferon-alfa (IFN-á) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC). 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, LBA3 2006; 24

  84. Casali PG, Garrett CR, Blackstein ME, et al. Updated results from a phase III trial of sunitinib in GIST patients (pts) for whom imatinib (IM) therapy has failed due to resistance or intolerance. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 9513 2006; 24

  85. Demetri G, van Oosterom AT, Garrett C, et al. Improved survival and sustained clinical benefit with SU11248 (SU) in pts with GIST after failure of imatinib mesylate (IM) therapy in a phase III trial. 2006 Gastrointestinal Cancers Symposium Abstract No: 8 2006

  86. George S, Casali PG, Blay J, et al. Phase II study of sunitinib administered in a continuous daily dosing regimen in patients (pts) with advanced GIST. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 9532 2006; 24

    Google Scholar 

  87. Socinski MA, Novello S, Sanchez JM, et al. Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): Preliminary results of a multicenter phase II trial. 2006 Gastrointestinal Cancers Symposium. Journal of Clinical Oncology, 241 2006; 24

    Google Scholar 

  88. Kulke M, Lenz HJ, Meropol NJ, et al. A phase 2 study to evaluate the efficacy and safety of SU11248 in patients (pts) with unresectable neuroendocrine tumors (NETs). 2005 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 4008 2005; 23

    Google Scholar 

  89. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002; 62:4645–4655

    PubMed  CAS  Google Scholar 

  90. Ryan AJ, Wedge SR. ZD6474–a novel inhibitor of VEGFR and EGFR tyrosine kinase activity. Br J Cancer 2005; 92 (Suppl 1):S6–13

    Article  PubMed  CAS  Google Scholar 

  91. Heymach JV. ZD6474–clinical experience to date. Br J Cancer 2005; 92 Suppl 1:S14–S20

    Article  PubMed  CAS  Google Scholar 

  92. Johnson BE, Ma P, West H, et. al. Preliminary phase II safety evaluation of ZD6474, in combination with carboplatin and paclitaxel, as 1st-line treatment in patients with NSCLC. 2005 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 7102 2005; 23

    Google Scholar 

  93. Heymach JV, Johnson BE, Prager D, et. al. A phase II trial of ZD6474 plus docetaxel in patients with previously treated NSCLC: Follow-up results. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 7016 2006; 24

    Google Scholar 

  94. Natale RB, Bodkin D, Govindan R, et. al. ZD6474 versus gefitinib in patients with advanced NSCLC: Final results from a two-part, double-blind, randomized phase II trial. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 7000 2006; 24

    Google Scholar 

  95. Wells S, You YN, Lakhani V, et al. A phase II trial of ZD6474 in patients with hereditary metastatic medullary thyroid cancer. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 5533 2006; 24

    Google Scholar 

  96. Thomas AL, Morgan B, Horsfield MA, et. al. Phase I Study of the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of PTK787/ZK 222584 Administered Twice Daily in Patients With Advanced Cancer. J Clin Oncol 2005

  97. Morgan B, Thomas AL, Drevs J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 2003; 21:3955–3964

    Article  PubMed  CAS  Google Scholar 

  98. Tyagi P. Vatalanib (PTK787/ZK 222584) in combination with FOLFOX4 versus FOLFOX4 alone as first-line treatment for colorectal cancer: preliminary results from the CONFIRM-1 trial. Clin Colorectal Cancer 2005; 5:24–26

    PubMed  Google Scholar 

  99. Koehne C, Bajetta E, Lin E, et al. Results of an interim analysis of a multinational randomized, double-blind, phase III study in patients (pts) with previously treated metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK787/ZK 222584 (PTK/ZK) or placebo (CONFIRM 2). 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 3508 2006; 24

  100. Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 2005; 4:677–685

    Article  PubMed  CAS  Google Scholar 

  101. Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005; 23:965–972

    Article  PubMed  CAS  Google Scholar 

  102. Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24:2505–2512

    Article  PubMed  CAS  Google Scholar 

  103. Ratain MJ, Eisen T, Stadler WM, et al. Final findings from a Phase II, placebo-controlled, randomized discontinuation trial (RDT) of sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). 2005 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 4544 2005; 23

    Google Scholar 

  104. Escudier B, Szczylic C, Eisen T, Stadler WM, Schwartz B, Shan M, Bukowski RM. Randomized Phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). 2005 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, LBA4510 2005; 23

  105. Eisen T, Bukowski RM, Staehler M, et al. Randomized phase III trial of sorafenib in advanced renal cell carcinoma (RCC): Impact of crossover on survival. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 4524 2006; 24

    Google Scholar 

  106. Perez-Soler R. Can rash associated with HER1/EGFR inhibition be used as a marker of treatment outcome? Oncology (Williston Park) 2003; 17:23–28

    Google Scholar 

  107. Strumberg D, Awada A, Hirte H, et al. Pooled safety analysis of BAY 43-9006 (sorafenib) monotherapy in patients with advanced solid tumours: Is rash associated with treatment outcome? Eur J Cancer 2006; 42:548–556

    Article  PubMed  CAS  Google Scholar 

  108. Maitland ML, Moshier K, Imperial J, et al. Blood pressure (BP) as a biomarker for sorafenib (S), an inhibitor of the vascular endothelial growth factor (VEGF) signaling pathway. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 2035 2006; 24

  109. Steeghs N, Hovens MM, Rabelink AJ, Op ‘t Roodt J, Matthys A, Christensen O, Gelderblom H. VEGFR2 blockade in patients with solid tumors: Mechanism of hypertension and effects on vascular function. 2006 ASCO Annual Meeting Proceedings. Journal of Clinical Oncology, 3037 2006; 24

  110. Sedlacek HH. Kinase inhibitors in cancer therapy: a look ahead. Drugs 2000; 59:435–476

    Article  PubMed  CAS  Google Scholar 

  111. Board R, Jayson GC. Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Updat 2005; 8:75–83

    Article  PubMed  CAS  Google Scholar 

  112. Ko YJ, Small EJ, Kabbinavar F, et al. A multi-institutional phase ii study of SU101, a platelet-derived growth factor receptor inhibitor, for patients with hormone-refractory prostate cancer. Clin Cancer Res 2001; 7:800–805

    PubMed  CAS  Google Scholar 

  113. Hoang T, Huang S, Armstrong E, Eickhoff JC, Harari PM. Augmentation of radiation response with the vascular targeting agent ZD6126. Int J Radiat Oncol Biol Phys 2006; 64:1458–1465

    PubMed  CAS  Google Scholar 

  114. Shimoyama T, Koizumi F, Fukumoto H, Kiura K, Tanimoto M, Saijo N, Nishio K. Effects of different combinations of gefitinib and irinotecan in lung cancer cell lines expressing wild or deletional EGFR. Lung Cancer 2006; 53:13–21

    Article  PubMed  Google Scholar 

  115. Pu YS, Hsieh MW, Wang CW, et al. Epidermal growth factor receptor inhibitor (PD168393) potentiates cytotoxic effects of paclitaxel against androgen-independent prostate cancer cells. Biochem Pharmacol 2006; 71:751–760

    Article  PubMed  CAS  Google Scholar 

  116. Taira N, Doihara H, Oota T, et al. Gefitinib, an epidermal growth factor receptor blockade agent, shows additional or synergistic effects on the radiosensitivity of esophageal cancer cells in vitro. Acta Med Okayama 2006; 60:25–34

    PubMed  CAS  Google Scholar 

  117. Chun PY, Feng FY, Scheurer AM, Davis MA, Lawrence TS, Nyati MK. Synergistic effects of gemcitabine and gefitinib in the treatment of head and neck carcinoma. Cancer Res 2006; 66:981–988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeltje Steeghs MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steeghs, N., Nortier, J.W.R. & Gelderblom, H. Small Molecule Tyrosine Kinase Inhibitors in the Treatment of Solid Tumors: An Update of Recent Developments. Ann Surg Oncol 14, 942–953 (2007). https://doi.org/10.1245/s10434-006-9227-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9227-1

Keywords

Navigation