Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

The pharmacogenetics and pharmacogenomics of asthma therapy

Abstract

Despite the availability of several classes of asthma medications and their overall effectiveness, a significant portion of patients fail to respond to these therapeutic agents. Evidence suggests that genetic factors may partly mediate the heterogeneity in asthma treatment response. This review discusses important findings in asthma pharmacogenetic and pharmacogenomic studies conducted to date, examines limitations of these studies and, finally, proposes future research directions in this field. The focus will be on the three major classes of asthma medications: β-adrenergic receptor agonists, inhaled corticosteroids and leukotriene modifiers. Although many studies are limited by small sample sizes and replication of the findings is needed, several candidate genes have been identified. High-throughput technologies are also allowing for large-scale genetic investigations. Thus, the future is promising for a personalized treatment of asthma, which will improve therapeutic outcomes, minimize side effects and lead to a more cost-effective care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Akinbami LJ, Moorman JE, Liu X . Asthma Prevalence, Health Care Use, and Mortality: United States, 2005–2009. Natl Health Stat Report 2011; 32: 1–14.

    Google Scholar 

  2. Barnett SB, Nurmagambetov TA . Costs of asthma in the United States: 2002–2007. J Allergy Clin Immunol 2011; 127: 145–152.

    Article  PubMed  Google Scholar 

  3. Drazen JM, Silverman EK, Lee TH . Heterogeneity of therapeutic responses in asthma. Br Med Bull 2000; 56: 1054–1070.

    Article  CAS  PubMed  Google Scholar 

  4. Thomsen SF, van der Sluis S, Kyvik KO, Skytthe A, Backer V . Estimates of asthma heritability in a large twin sample. Clin Exp Allergy 2010; 40: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  5. Brand PL, Duiverman EJ, Waalkens HJ, van Essen-Zandvliet EE, Kerrebijn KF . Peak flow variation in childhood asthma: correlation with symptoms, airways obstruction, and hyperresponsiveness during long-term treatment with inhaled corticosteroids. Dutch CNSLD Study Group. Thorax 1999; 54: 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frischer T, Meinert R, Urbanek R, Kuehr J . Variability of peak expiratory flow rate in children: short and long term reproducibility. Thorax 1995; 50: 35–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bacharier LB, Strunk RC, Mauger D, White D, Lemanske Jr RF, Sorkness CA . Classifying asthma severity in children: mismatch between symptoms, medication use, and lung function. Am J Respir Crit Care Med 2004; 170: 426–432.

    Article  PubMed  Google Scholar 

  8. Wildhaber JH, Sznitman J, Harpes P, Straub D, Moller A, Basek P et al. Correlation of spirometry and symptom scores in childhood asthma and the usefulness of curvature assessment in expiratory flow-volume curves. Respir Care 2007; 52: 1744–1752.

    PubMed  Google Scholar 

  9. Horak E, Grassl G, Skladal D, Ulmer H . Lung function and symptom perception in children with asthma and their parents. Pediatr Pulmonol 2003; 35: 23–28.

    Article  PubMed  Google Scholar 

  10. Kainu A, Lindqvist A, Sarna S, Lundback B, Sovijarvi A . FEV1 response to bronchodilation in an adult urban population. Chest 2008; 134: 387–393.

    Article  PubMed  Google Scholar 

  11. Malmstrom K, Rodriguez-Gomez G, Guerra J, Villaran C, Pineiro A, Wei LX et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med 1999; 130: 487–495.

    Article  CAS  PubMed  Google Scholar 

  12. Tantisira KG, Lake S, Silverman ES, Palmer LJ, Lazarus R, Silverman EK et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet 2004; 13: 1353–1359.

    Article  CAS  PubMed  Google Scholar 

  13. EPR-3 Expert Panel Report 3 (EPR3): Guidelines for the Diagnosis and Management of Asthma (EPR-3 2007) NIH Publication No. 08-4051. Bethesda, MD: U.S. Department of Health and Human Services; National Institutes of Health; National Heart, Lung, and Blood Institute; National Asthma Education and Prevention Program, 2007.

  14. Johnson M . Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol 2006; 117: 18–24;quiz 25.

    Article  CAS  PubMed  Google Scholar 

  15. Contopoulos-Ioannidis DG, Alexiou GA, Gouvias TC, Ioannidis JP . An empirical evaluation of multifarious outcomes in pharmacogenetics: beta-2 adrenoceptor gene polymorphisms in asthma treatment. Pharmacogenet Genomics 2006; 16: 705–711.

    Article  CAS  PubMed  Google Scholar 

  16. Kobilka BK, Dixon RA, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS et al. cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 1987; 84: 46–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hawkins GA, Tantisira K, Meyers DA, Ampleford EJ, Moore WC, Klanderman B et al. Sequence, haplotype, and association analysis of ADRbeta2 in a multiethnic asthma case-control study. Am J Respir Crit Care Med 2006; 174: 1101–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chu X, Dong Y, Shen M, Sun L, Dong C, Wang Y et al. Polymorphisms in the ADRB2 gene and Graves disease: a case-control study and a meta-analysis of available evidence. BMC Med Genet 2009; 10: 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reihsaus E, Innis M, MacIntyre N, Liggett SB . Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 1993; 8: 334–339.

    Article  CAS  PubMed  Google Scholar 

  20. Belfer I, Buzas B, Evans C, Hipp H, Phillips G, Taubman J et al. Haplotype structure of the beta adrenergic receptor genes in US Caucasians and African Americans. Eur J Hum Genet 2005; 13: 341–351.

    Article  CAS  PubMed  Google Scholar 

  21. Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R . Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest 1997; 100: 3184–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choudhry S, Ung N, Avila PC, Ziv E, Nazario S, Casal J et al. Pharmacogenetic differences in response to albuterol between Puerto Ricans and Mexicans with asthma. Am J Respir Crit Care Med 2005; 171: 563–570.

    Article  PubMed  Google Scholar 

  23. Israel E, Drazen JM, Liggett SB, Boushey HA, Cherniack RM, Chinchilli VM et al. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med 2000; 162: 75–80.

    Article  CAS  PubMed  Google Scholar 

  24. Israel E, Chinchilli VM, Ford JG, Boushey HA, Cherniack R, Craig TJ et al. Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet 2004; 364: 1505–1512.

    Article  CAS  PubMed  Google Scholar 

  25. Wechsler ME, Lehman E, Lazarus SC, Lemanske Jr RF, Boushey HA, Deykin A et al. Beta-Adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care Med 2006; 173: 519–526.

    Article  CAS  PubMed  Google Scholar 

  26. Bleecker ER, Postma DS, Lawrance RM, Meyers DA, Ambrose HJ, Goldman M . Effect of ADRB2 polymorphisms on response to longacting beta2-agonist therapy: a pharmacogenetic analysis of two randomised studies. Lancet 2007; 370: 2118–2125.

    Article  CAS  PubMed  Google Scholar 

  27. Wechsler ME, Kunselman SJ, Chinchilli VM, Bleecker E, Boushey HA, Calhoun WJ et al. Effect of beta2-adrenergic receptor polymorphism on response to longacting beta2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial. Lancet 2009; 374: 1754–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bleecker ER, Nelson HS, Kraft M, Corren J, Meyers DA, Yancey SW et al. Beta2-receptor polymorphisms in patients receiving salmeterol with or without fluticasone propionate. Am J Respir Crit Care Med 2010; 181: 676–687.

    Article  CAS  PubMed  Google Scholar 

  29. Bleecker ER, Lawrance RM, Ambrose HJ, Goldman M . Beta2-adrenergic receptor gene polymorphisms: is Arg/Arg genotype associated with serious adverse events during treatment with budesonide and formoterol in one pressurized metered-dose inhaler (BUD/FM pMDI) within racial groups? Am J Respir Crit Care Med 2008; 177: A775.

    Google Scholar 

  30. Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM . The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest 2006; 129: 15–26.

    Article  CAS  PubMed  Google Scholar 

  31. Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 2000; 97: 10483–10488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Que LG, Yang Z, Stamler JS, Lugogo NL, Kraft M . S-nitrosoglutathione reductase: an important regulator in human asthma. Am J Respir Crit Care Med 2009; 180: 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choudhry S, Que LG, Yang Z, Liu L, Eng C, Kim SO et al. GSNO reductase and beta2-adrenergic receptor gene-gene interaction: bronchodilator responsiveness to albuterol. Pharmacogenet Genomics 2010; 20: 351–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Litonjua AA, Lasky-Su J, Schneiter K, Tantisira KG, Lazarus R, Klanderman B et al. ARG1 is a novel bronchodilator response gene: screening and replication in four asthma cohorts. Am J Respir Crit Care Med 2008; 178: 688–694.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G . Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004; 84: 731–765.

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest 2003; 111: 1863–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vonk JM, Postma DS, Maarsingh H, Bruinenberg M, Koppelman GH, Meurs H . Arginase 1 and arginase 2 variations associate with asthma, asthma severity and beta2 agonist and steroid response. Pharmacogenet Genomics 2010; 20: 179–186.

    Article  CAS  PubMed  Google Scholar 

  38. Duan QL, Gaume BR, Hawkins GA, Himes BE, Bleecker ER, Klanderman B et al. Regulatory haplotypes in ARG1 are associated with altered bronchodilator response. Am J Respir Crit Care Med 2010; 183: 449–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Himes BE, Wu AC, Duan QL, Klanderman B, Litonjua AA, Tantisira K et al. Predicting response to short-acting bronchodilator medication using Bayesian networks. Pharmacogenomics 2009; 10: 1393–1412.

    Article  CAS  PubMed  Google Scholar 

  40. Umland SP, Schleimer RP, Johnston SL . Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma. Pulm Pharmacol Ther 2002; 15: 35–50.

    Article  CAS  PubMed  Google Scholar 

  41. Robinson D, Hamid Q, Ying S, Bentley A, Assoufi B, Durham S et al. Prednisolone treatment in asthma is associated with modulation of bronchoalveolar lavage cell interleukin-4, interleukin-5, and interferon-gamma cytokine gene expression. Am Rev Respir Dis 1993; 148: 401–406.

    Article  CAS  PubMed  Google Scholar 

  42. Powell N, Till SJ, Kay AB, Corrigan CJ . The topical glucocorticoids beclomethasone dipropionate and fluticasone propionate inhibit human T-cell allergen-induced production of IL-5, IL-3 and GM-CSF mRNA and protein. Clin Exp Allergy 2001; 31: 69–76.

    Article  CAS  PubMed  Google Scholar 

  43. John M, Lim S, Seybold J, Jose P, Robichaud A, O’Connor B et al. Inhaled corticosteroids increase interleukin-10 but reduce macrophage inflammatory protein-1alpha, granulocyte-macrophage colony-stimulating factor, and interferon-gamma release from alveolar macrophages in asthma. Am J Respir Crit Care Med 1998; 157: 256–262.

    Article  CAS  PubMed  Google Scholar 

  44. Naseer T, Minshall EM, Leung DY, Laberge S, Ernst P, Martin RJ et al. Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am J Respir Crit Care Med 1997; 155: 845–851.

    Article  CAS  PubMed  Google Scholar 

  45. Cooper PR, Panettieri Jr RA . Steroids completely reverse albuterol-induced beta(2)-adrenergic receptor tolerance in human small airways. J Allergy Clin Immunol 2008; 122: 734–740.

    Article  CAS  PubMed  Google Scholar 

  46. Nino G, Hu A, Grunstein JS, Grunstein MM . Mechanism of glucocorticoid protection of airway smooth muscle from proasthmatic effects of long-acting beta2-adrenoceptor agonist exposure. J Allergy Clin Immunol 2010; 125: 1020–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin SL, Goya S, Nakae S, Wang D, Bruss M, Hou C et al. Phosphodiesterase 4B is essential for T(H)2-cell function and development of airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol 2010; 126: 1252–1259, e1212.

    Article  CAS  PubMed  Google Scholar 

  48. Szefler SJ, Martin RJ, King TS, Boushey HA, Cherniack RM, Chinchilli VM et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol 2002; 109: 410–418.

    Article  CAS  PubMed  Google Scholar 

  49. Theoharides TC, Singh LK, Boucher W, Pang X, Letourneau R, Webster E et al. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology 1998; 139: 403–413.

    Article  CAS  PubMed  Google Scholar 

  50. Silverman ES, Breault DT, Vallone J, Subramanian S, Yilmaz AD, Mathew S et al. Corticotropin-releasing hormone deficiency increases allergen-induced airway inflammation in a mouse model of asthma. J Allergy Clin Immunol 2004; 114: 747–754.

    Article  CAS  PubMed  Google Scholar 

  51. Dijkstra A, Koppelman GH, Vonk JM, Bruinenberg M, Schouten JP, Postma DS . Pharmacogenomics and outcome of asthma: no clinical application for long-term steroid effects by CRHR1 polymorphisms. J Allergy Clin Immunol 2008; 121: 1510–1513.

    Article  CAS  PubMed  Google Scholar 

  52. Tantisira KG, Lazarus R, Litonjua AA, Klanderman B, Weiss ST . Chromosome 17: association of a large inversion polymorphism with corticosteroid response in asthma. Pharmacogenet Genomics 2008; 18: 733–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hawkins GA, Lazarus R, Smith RS, Tantisira KG, Meyers DA, Peters SP et al. The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J Allergy Clin Immunol 2009; 123: 1376–1383, e1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH . A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655–669.

    Article  CAS  PubMed  Google Scholar 

  55. Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002; 295: 336–338.

    Article  CAS  PubMed  Google Scholar 

  56. Tantisira KG, Hwang ES, Raby BA, Silverman ES, Lake SL, Richter BG et al. TBX21: a functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc Natl Acad Sci USA 2004; 101: 18099–18104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raby BA, Hwang ES, Van Steen K, Tantisira K, Peng S, Litonjua A et al. T-bet polymorphisms are associated with asthma and airway hyperresponsiveness. Am J Respir Crit Care Med 2006; 173: 64–70.

    Article  CAS  PubMed  Google Scholar 

  58. Fischer A, Konig W . Regulation of CD23 expression, soluble CD23 release and immunoglobulin synthesis of peripheral blood lymphocytes by glucocorticoids. Immunology 1990; 71: 473–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tantisira KG, Silverman ES, Mariani TJ, Xu J, Richter BG, Klanderman BJ et al. FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J Allergy Clin Immunol 2007; 120: 1285–1291.

    Article  CAS  PubMed  Google Scholar 

  60. Jin Y, Hu D, Peterson EL, Eng C, Levin AM, Wells K et al. Dual-specificity phosphatase 1 as a pharmacogenetic modifier of inhaled steroid response among asthmatic patients. J Allergy Clin Immunol 2010; 126: 618–625, e611–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA 2007; 104: 15858–15863.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hakonarson H, Bjornsdottir US, Halapi E, Bradfield J, Zink F, Mouy M et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc Natl Acad Sci USA 2005; 102: 14789–14794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Israel E, Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Shapiro J et al. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993; 148 (6 Part 1): 1447–1451.

    Article  CAS  PubMed  Google Scholar 

  64. Reiss TF, Hill JB, Harman E, Zhang J, Tanaka WK, Bronsky E et al. Increased urinary excretion of LTE4 after exercise and attenuation of exercise-induced bronchospasm by montelukast, a cysteinyl leukotriene receptor antagonist. Thorax 1997; 52: 1030–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scadding GW, Scadding GK . Recent advances in antileukotriene therapy. Curr Opin Allergy Clin Immunol 2010; 10: 370–376.

    Article  CAS  PubMed  Google Scholar 

  66. Ogawa Y, Calhoun WJ . The role of leukotrienes in airway inflammation. J Allergy Clin Immunol 2006; 118: 789–798; quiz 799–800.

    Article  CAS  PubMed  Google Scholar 

  67. Lima JJ . Treatment heterogeneity in asthma: genetics of response to leukotriene modifiers. Mol Diagn Ther 2007; 11: 97–104.

    Article  CAS  PubMed  Google Scholar 

  68. In KH, Asano K, Beier D, Grobholz J, Finn PW, Silverman EK et al. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription. J Clin Invest 1997; 99: 1130–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Drazen JM, Yandava CN, Dube L, Szczerback N, Hippensteel R, Pillari A et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 1999; 22: 168–170.

    Article  CAS  PubMed  Google Scholar 

  70. Telleria JJ, Blanco-Quiros A, Varillas D, Armentia A, Fernandez-Carvajal I, Jesus Alonso M et al. ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir Med 2008; 102: 857–861.

    Article  PubMed  Google Scholar 

  71. Klotsman M, York TP, Pillai SG, Vargas-Irwin C, Sharma SS, van den Oord EJ et al. Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet Genomics 2007; 17: 189–196.

    Article  CAS  PubMed  Google Scholar 

  72. Lima JJ, Zhang S, Grant A, Shao L, Tantisira KG, Allayee H et al. Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am J Respir Crit Care Med 2006; 173: 379–385.

    Article  CAS  PubMed  Google Scholar 

  73. Tantisira KG, Lima J, Sylvia J, Klanderman B, Weiss ST . 5-lipoxygenase pharmacogenetics in asthma: overlap with Cys-leukotriene receptor antagonist loci. Pharmacogenet Genomics 2009; 19: 244–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brechot JM, Hurbain I, Fajac A, Daty N, Bernaudin JF . Different pattern of MRP localization in ciliated and basal cells from human bronchial epithelium. J Histochem Cytochem 1998; 46: 513–517.

    Article  CAS  PubMed  Google Scholar 

  75. Sampson AP, Siddiqui S, Buchanan D, Howarth PH, Holgate ST, Holloway JW et al. Variant LTC(4) synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 2000; 55 (Suppl 2): S28–S31.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mastalerz L, Nizankowska E, Sanak M, Mejza F, Pierzchalska M, Bazan-Socha S et al. Clinical and genetic features underlying the response of patients with bronchial asthma to treatment with a leukotriene receptor antagonist. Eur J Clin Invest 2002; 32: 949–955.

    Article  CAS  PubMed  Google Scholar 

  77. Asano K, Shiomi T, Hasegawa N, Nakamura H, Kudo H, Matsuzaki T et al. Leukotriene C4 synthase gene A(-444)C polymorphism and clinical response to a CYS-LT(1) antagonist, pranlukast, in Japanese patients with moderate asthma. Pharmacogenetics 2002; 12: 565–570.

    Article  CAS  PubMed  Google Scholar 

  78. Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ . Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics 2009; 19: 129–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim JH, Lee SY, Kim HB, Jin HS, Yu JH, Kim BJ et al. TBXA2R gene polymorphism and responsiveness to leukotriene receptor antagonist in children with asthma. Clin Exp Allergy 2008; 38: 51–59.

    CAS  PubMed  Google Scholar 

  80. Kang MJ, Kwon JW, Kim BJ, Yu J, Choi WA, Shin YJ et al. Polymorphisms of the PTGDR and LTC4S influence responsiveness to leukotriene receptor antagonists in Korean children with asthma. J Hum Genet 2011; 56: 284–289.

    Article  CAS  PubMed  Google Scholar 

  81. Kang MJ, Lee SY, Kim HB, Yu J, Kim BJ, Choi WA et al. Association of IL-13 polymorphisms with leukotriene receptor antagonist drug responsiveness in Korean children with exercise-induced bronchoconstriction. Pharmacogenet Genomics 2008; 18: 551–558.

    Article  CAS  PubMed  Google Scholar 

  82. Kabesch M, Michel S, Tost J . Epigenetic mechanisms and the relationship to childhood asthma. Eur Respir J 2010; 36: 950–961.

    Article  CAS  PubMed  Google Scholar 

  83. Ito K, Caramori G, Lim S, Oates T, Chung KF, Barnes PJ et al. Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med 2002; 166: 392–396.

    Article  PubMed  Google Scholar 

  84. Walsh KM, Bracken MB, Murk WK, Hoh J, Dewan AT . Association between reduced copy-number at T-cell receptor gamma (TCRgamma) and childhood allergic asthma: a possible role for somatic mosaicism. Mutat Res 2010; 690: 89–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meyer UA . Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 2004; 5: 669–676.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health Grants U01 HL65899 and R01 HL92197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Tse.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tse, S., Tantisira, K. & Weiss, S. The pharmacogenetics and pharmacogenomics of asthma therapy. Pharmacogenomics J 11, 383–392 (2011). https://doi.org/10.1038/tpj.2011.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.46

Keywords

This article is cited by

Search

Quick links