Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pulmonary hypertension with left-sided heart disease

Abstract

Pulmonary hypertension (PH) with left-sided heart disease is defined, according to the latest Venice classification, as a Group 2 PH, which includes left-sided ventricular or atrial disease, and left-sided valvular diseases. These conditions are all associated with increased left ventricular filling pressure. Although PH with left-sided heart disease is a common entity, and long-term follow-up trials have provided firm recognition that development of left-sided PH carries a poor outcome, available data on incidence, pathophysiology, and therapy are sparse. Mitral stenosis was reported as the most frequent cause of PH several decades ago, but PH with left-sided heart disease is now usually caused by systemic hypertension and ischemic heart disease. In patients with these conditions, PH develops as a consequence of impaired left ventricular relaxation and distensibility. Chronic sustained elevation of cardiogenic blood pressure in pulmonary capillaries leads to a cascade of untoward retrograde anatomical and functional effects that represent specific targets for therapeutic intervention. The pathophysiological and clinical importance of the hemodynamic consequences of left-sided heart disease, starting with lung capillary injury and leading to right ventricular overload and failure, are discussed in this Review, focusing on PH as an evolving contributor to heart failure that may be amenable to novel interventions.

Key Points

  • Pulmonary hypertension (PH) with left-sided heart disease is a common clinical entity that usually develops as a consequence of impaired relaxation and distensibility of the left ventricle

  • Although left-sided PH has a poor outcome, and patients with this condition have a high risk of developing right ventricular failure, available data on PH incidence, pathophysiology, and therapy are limited

  • Chronic sustained cardiogenic pressure elevation in pulmonary capillaries leads to a cascade of adverse retrograde anatomical and functional events that represent potential targets for intervention

  • Therapy of left-sided PH is challenging and most therapeutic strategies tested for this condition have had negative results

  • Although precise guidelines on the most beneficial and cost-effective strategies for managing left-sided PH are lacking, promising results have been observed with the use of PDE5 inhibitors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elevation in left atrial pressure and proposed sequence of events that lead to capillary stress failure and alveolar membrane remodeling.

Similar content being viewed by others

References

  1. WHO. Executive summary from the World Symposium on Primary Pulmonary Hypertension (WHO, Evian, 1998).

  2. Simonneau, G. et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 43, 5S–12S (2004).

    PubMed  Google Scholar 

  3. De Marco, T. & Rapaport, E. in Textbook of Respiratory Medicine 4th edn Ch. 52 (eds Mason, R. J., Broaddus, V. C., Murray, J. F. & Nadel, J. A.) 1544–1569 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  4. Gheorghiade, M., Filippatos, G., De Luca, L. & Burnett, J. Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am. J. Med. 119 (Suppl. 1), S3–S10 (2006).

    PubMed  Google Scholar 

  5. Lucas, C. et al. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am. Heart J. 140, 840–847 (2000).

    CAS  PubMed  Google Scholar 

  6. Gandhi, S. K. et al. The pathogenesis of acute pulmonary edema associated with hypertension. N. Engl. J. Med. 344, 17–22 (2001).

    CAS  PubMed  Google Scholar 

  7. Aurigemma, G. P. & Gaasch, W. H. Clinical practice. Diastolic heart failure. N. Engl. J. Med. 351, 1097–1105 (2004).

    CAS  PubMed  Google Scholar 

  8. Klapholz, M. et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J. Am. Coll. Cardiol. 43, 1432–1438 (2004).

    PubMed  Google Scholar 

  9. Kjaergaard, J. et al. Prognostic importance of pulmonary hypertension in patients with heart failure. Am. J. Cardiol. 99, 1146–1150 (2007).

    PubMed  Google Scholar 

  10. Shapiro, B. P., Nishimura, R. A., McGoon, M. D. & Redfield, M. M. Diagnostic dilemmas: diastolic heart failure causing pulmonary hypertension and pulmonary hypertension causing diastolic dysfunction. Adv. Pulmon. Hypertens. 5, 13–20 (2006).

    Google Scholar 

  11. Lam, C. S. et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J. Am. Coll. Cardiol. 53, 1119–1126 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Hoeper, M. M. et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J. Am. Coll. Cardiol. 54, S85–S96 (2009).

    PubMed  Google Scholar 

  13. Guazzi, M. Alveolar gas diffusion abnormalities in heart failure. J. Card. Fail. 14, 695–702 (2008).

    PubMed  Google Scholar 

  14. Aird, W. C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100, 174–190 (2007).

    CAS  PubMed  Google Scholar 

  15. Crone, C., Saumon, G. & Basset, G. News from the alveoli. News Physiol. Sci. 5, 50–53 (1990).

    Google Scholar 

  16. West, J. B. & Mathieu-Costello, O. Vulnerability of pulmonary capillaries in heart disease. Circulation 92, 622–631 (1995).

    CAS  PubMed  Google Scholar 

  17. Tsukimoto, K., Mathieu-Costello, O., Prediletto, R., Elliott, A. R. & West, J. B. Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J. Appl. Physiol. 71, 573–582 (1991).

    CAS  PubMed  Google Scholar 

  18. Conforti, E., Fenoglio, C., Bernocchi, G., Bruschi, O. & Miserocchi, G. A. Morpho-functional analysis of lung tissue in mild interstitial edema. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L766–L774 (2002).

    CAS  PubMed  Google Scholar 

  19. Negrini, D., Passi, A., de Luca, G. & Miserocchi, G. Pulmonary interstitial pressure and proteoglycans during development of pulmonary edema. Am. J. Physiol. 270, H2000–H2007 (1996).

    CAS  PubMed  Google Scholar 

  20. Palestini, P. et al. Composition, biophysical properties, and morphometry of plasma membranes in pulmonary interstitial edema. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L1382–L1390 (2002).

    CAS  PubMed  Google Scholar 

  21. De Pasquale, C. G. et al. Plasma surfactant protein-B: a novel biomarker in chronic heart failure. Circulation 110, 1091–1096 (2004).

    CAS  PubMed  Google Scholar 

  22. Townsley, M. I., Fu, Z., Mathieu-Costello, O. & West, J. B. Pulmonary microvascular permeability. Responses to high vascular pressure after induction of pacing-induced heart failure in dogs. Circ. Res. 77, 317–325 (1995).

    CAS  PubMed  Google Scholar 

  23. Kay, J. M. & Edwards, F. R. Ultrastructure of the alveolar-capillary wall in mitral stenosis. J. Pathol. 111, 239–245 (1973).

    CAS  PubMed  Google Scholar 

  24. Lee, Y. S. Electron microscopic studies on the alveolar-capillary barrier in the patients of chronic pulmonary edema. Jpn Circ. J. 43, 945–954 (1979).

    CAS  PubMed  Google Scholar 

  25. Drake, R. E. & Doursout, M. F. Pulmonary edema and elevated left atrial pressure: four hours and beyond. News Physiol. Sci. 17, 223–226 (2002).

    CAS  PubMed  Google Scholar 

  26. Berg, J. T., Breen, E. C., Fu, Z., Mathieu-Costello, O. & West, J. B. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma. Am. J. Respir. Crit. Care Med. 158, 1920–1928 (1998).

    CAS  PubMed  Google Scholar 

  27. Guazzi, M., Pontone, G., Brambilla, R., Agostoni, P. & Rèina, G. Alveolar-capillary membrane gas conductance: a novel prognostic indicator in chronic heart failure. Eur. Heart J. 23, 467–476 (2002).

    CAS  PubMed  Google Scholar 

  28. Rabinovitch, M. EVE and beyond, retro and prospective insights. Am. J. Physiol. 277, L5–L12 (1999).

    CAS  PubMed  Google Scholar 

  29. Rich, S. & Rabinovitch, M. Diagnosis and treatment of secondary (non-category 1) pulmonary hypertension. Circulation 118, 2190–2199 (2008).

    PubMed  Google Scholar 

  30. Stobierska-Dzierzek, B., Awad, H. & Michler, R. E. The evolving management of acute right-sided heart failure in cardiac transplant recipients. J. Am. Coll. Cardiol. 38, 923–931 (2001).

    CAS  PubMed  Google Scholar 

  31. Du, L. et al. Signaling molecules in nonfamilial pulmonary hypertension. N. Engl. J. Med. 348, 500–509 (2003).

    CAS  PubMed  Google Scholar 

  32. Ooi, H., Colucci, W. S. & Givertz, M. M. Endothelin mediates increased pulmonary vascular tone in patients with heart failure: demonstration by direct intrapulmonary infusion of sitaxsentan. Circulation 106, 1618–1621 (2002).

    CAS  PubMed  Google Scholar 

  33. Cooper, C. J. et al. The influence of basal nitric oxide activity on pulmonary vascular resistance in patients with congestive heart failure. Am. J. Cardiol. 82, 609–614 (1998).

    CAS  PubMed  Google Scholar 

  34. Stamler, J. S., Loh, E., Roddy, M. A., Currie, K. E. & Creager, M. A. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89, 2035–2040 (1994).

    CAS  PubMed  Google Scholar 

  35. Blitzer, M. L., Loh, E., Roddy, M. A., Stamler, J. S. & Creager, M. A. Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J. Am. Coll. Cardiol. 28, 591–596 (1996).

    CAS  PubMed  Google Scholar 

  36. Guazzi, M., Arena, R., Vicenzi, M. & Guazzi, M. D. Regulation of alveolar gas conductance by NO in man, as based on studies with NO donors and inhibitors of NO production. Acta Physiol. (Oxf.) 196, 267–277 (2009).

    CAS  Google Scholar 

  37. Porter, T. R. et al. Endothelium-dependent pulmonary artery responses in chronic heart failure: influence of pulmonary hypertension. J. Am. Coll. Cardiol. 22, 1418–1424 (1993).

    CAS  PubMed  Google Scholar 

  38. Yanagisawa, M. et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415 (1988).

    CAS  PubMed  Google Scholar 

  39. Fukuroda, T. et al. Endothelin receptor subtypes in human versus rabbit pulmonary arteries. J. Appl. Physiol. 76, 1976–1982 (1994).

    CAS  PubMed  Google Scholar 

  40. Giaid, A. et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 328, 1732–1739 (1993).

    CAS  PubMed  Google Scholar 

  41. Ray, L. et al. Early increase in pulmonary vascular reactivity with overexpression of endothelin-1 and vascular endothelial growth factor in canine experimental heart failure. Exp. Physiol. 93, 434–442 (2008).

    CAS  PubMed  Google Scholar 

  42. Cody, R. J., Haas, G. J., Binkley, P. F., Capers, Q. & Kelley, R. Plasma endothelin correlates with the extent of pulmonary hypertension in patients with chronic congestive heart failure. Circulation 85, 504–509 (1992).

    CAS  PubMed  Google Scholar 

  43. Hülsmann, M. et al. Value of cardiopulmonary exercise testing and big endothelin plasma levels to predict short-term prognosis of patients with chronic heart failure. J. Am. Coll. Cardiol. 32, 1695–1700 (1998).

    PubMed  Google Scholar 

  44. Rich, S. & McLaughlin, V. V. Endothelin receptor blockers in cardiovascular disease. Circulation 108, 2184–2190 (2003).

    CAS  PubMed  Google Scholar 

  45. Drazner, M. H. et al. Relationship between right and left-sided filling pressures in 1000 patients with advanced heart failure. J. Heart Lung Transplant. 18, 1126–1132 (1999).

    CAS  PubMed  Google Scholar 

  46. Drazner, M. H. et al. The relationship of right- and left-sided filling pressures in patients with heart failure and a preserved ejection fraction. Circ. Heart Fail. 3, 202–206 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Enriquez-Sarano, M., Rossi, A., Seward, J. B., Bailey, K. R. & Tajik, A. J. Determinants of pulmonary hypertension in left ventricular dysfunction. J. Am. Coll. Cardiol. 29, 153–159 (1997).

    CAS  PubMed  Google Scholar 

  48. Buchbinder, N. & Ganz, W. Hemodynamic monitoring: invasive techniques. Anesthesiology 45, 146–155 (1976).

    CAS  PubMed  Google Scholar 

  49. Chemla, D., Castelain, V., Hervé, P., Lecarpentier, Y. & Brimioulle, S. Haemodynamic evaluation of pulmonary hypertension. Eur. Respir. J. 20, 1314–1331 (2002).

    CAS  PubMed  Google Scholar 

  50. Kafi, S. A., Mélot, C., Vachiéry, J. L., Brimioulle, S. & Naeije, R. Partitioning of pulmonary vascular resistance in primary pulmonary hypertension. J. Am. Coll. Cardiol. 31, 1372–1376 (1998).

    CAS  PubMed  Google Scholar 

  51. Klinger, J. R. & Hill, N. S. Right ventricular dysfunction in chronic obstructive pulmonary disease. Chest 99, 715–723 (1991).

    CAS  PubMed  Google Scholar 

  52. Guyton, A. C., Lindsey, A. W. & Gilluly, J. J. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ. Res. 2, 326–332 (1954).

    CAS  PubMed  Google Scholar 

  53. Guazzi, M. et al. How the left and right sides of the heart, as well as pulmonary venous drainage, adapt to an increasing degree of head-up tilting in hypertrophic cardiomyopathy: differences from the normal heart. J. Am. Coll. Cardiol. 36, 185–193 (2000).

    CAS  PubMed  Google Scholar 

  54. Skorecki, K. L., Winaver, J. & Abassi, Z. in The Kidney 8th edn Ch. 12 (ed. Brenner, B. M.) 398–458 (Saunders, Philadelphia, 2008).

    Google Scholar 

  55. Marenzi, G. et al. Interrelation of humoral factors, hemodynamics, and fluid and salt metabolism in congestive heart failure: effects of extracorporeal ultrafiltration. Am. J. Med. 94, 49–56 (1993).

    CAS  PubMed  Google Scholar 

  56. Guazzi, M. D. et al. Apparent paradox of neurohumoral axis inhibition after body fluid volume depletion in patients with chronic congestive heart failure and water retention. Br. Heart J. 72, 534–539 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghio, S. et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J. Am. Coll. Cardiol. 37, 183–188 (2001).

    CAS  PubMed  Google Scholar 

  58. Polak, J. F., Holman, B. L., Wynne, J. & Colucci, W. S. Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease. J. Am. Coll. Cardiol. 2, 217–224 (1983).

    CAS  PubMed  Google Scholar 

  59. Di Salvo, T. G., Mathier, M., Semigran, M. J. & Dec, G. W. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J. Am. Coll. Cardiol. 25, 1143–1153 (1995).

    CAS  PubMed  Google Scholar 

  60. Sun, J. P. et al. Comparison of mortality rates and progression of left ventricular dysfunction in patients with idiopathic dilated cardiomyopathy and dilated versus nondilated right ventricular cavities. Am. J. Cardiol. 80, 1583–1587 (1997).

    CAS  PubMed  Google Scholar 

  61. Gavazzi, A. et al. Value of right ventricular ejection fraction in predicting short-term prognosis of patients with severe chronic heart failure. J. Heart Lung Transplant. 16, 774–785 (1997).

    CAS  PubMed  Google Scholar 

  62. Gorcsan, J. 3rd, Murali, S., Counihan, P. J., Mandarino, W. A. & Kormos, R. L. Right ventricular performance and contractile reserve in patients with severe heart failure. Assessment by pressure-area relations and association with outcome. Circulation 94, 3190–3197 (1996).

    PubMed  Google Scholar 

  63. de Groote, P. et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J. Am. Coll. Cardiol. 32, 948–954 (1998).

    CAS  PubMed  Google Scholar 

  64. Meluzin, J. et al. Prognostic importance of various echocardiographic right ventricular functional parameters in patients with symptomatic heart failure. J. Am. Soc. Echocardiogr. 18, 435–444 (2005).

    PubMed  Google Scholar 

  65. Field, M. E. et al. Right ventricular dysfunction and adverse outcome in patients with advanced heart failure. J. Card. Fail. 12, 616–620 (2006).

    PubMed  Google Scholar 

  66. Meyer, P. et al. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 121, 252–258 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Lester, S. J. et al. Unlocking the mysteries of diastolic function: deciphering the Rosetta Stone 10 years later. J. Am. Coll. Cardiol. 51, 679–689 (2008).

    PubMed  Google Scholar 

  68. Nagueh, S. F., Middleton, K. J., Kopelen, H. A., Zoghbi, W. A. & Quiñones, M. A. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J. Am. Coll. Cardiol. 30, 1527–1533 (1997).

    CAS  PubMed  Google Scholar 

  69. Lam, C. S. Heart failure with preserved ejection fraction: invasive solution to diagnostic confusion? J. Am. Coll. Cardiol. 55, 1711–1712 (2010).

    PubMed  Google Scholar 

  70. Fiack, C. A. & Farber, H. W. Pulmonary hypertension associated with left ventricular diastolic dysfunction. J. Heart Lung Transplant. 29, 230–231 (2010).

    PubMed  Google Scholar 

  71. Piérard, L. A. & Lancellotti, P. The role of ischemic mitral regurgitation in the pathogenesis of acute pulmonary edema. N. Engl. J. Med. 351, 1627–1634 (2004).

    PubMed  Google Scholar 

  72. Guazzi, M. Pulmonary hypertension in heart failure with preserved ejection fraction: any pathophysiological role of mitral regurgitation. J. Am. Coll. Cardiol. 54, 1191–1192 (2009).

    PubMed  Google Scholar 

  73. Costard-Jäckle, A. & Fowler, M. B. Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J. Am. Coll. Cardiol. 19, 48–54 (1992).

    PubMed  Google Scholar 

  74. Givertz, M. M., Hare, J. M., Loh, E., Gauthier, D. F. & Colucci, W. S. Effect of bolus milrinone on hemodynamic variables and pulmonary vascular resistance in patients with severe left ventricular dysfunction: a rapid test for reversibility of pulmonary hypertension. J. Am. Coll. Cardiol. 28, 1775–1780 (1996).

    CAS  PubMed  Google Scholar 

  75. Kitzman, D. W., Higginbotham, M. B., Cobb, F. R., Sheikh, K. H. & Sullivan, M. J. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J. Am. Coll. Cardiol. 17, 1065–1072 (1991).

    CAS  PubMed  Google Scholar 

  76. Tolle, J. J., Waxman, A. B., Van Horn, T. L., Pappagianopoulos, P. P. & Systrom, D. M. Exercise-induced pulmonary arterial hypertension. Circulation 118, 2183–2189 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Tumminello, G., Lancellotti, P., Lempereur, M., D'Orio, V. & Pierard, L. A. Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur. Heart J. 28, 569–574 (2007).

    PubMed  Google Scholar 

  78. Butler, J., Chomsky, D. B. & Wilson, J. R. Pulmonary hypertension and exercise intolerance in patients with heart failure. J. Am. Coll. Cardiol. 34, 1802–1806 (1999).

    CAS  PubMed  Google Scholar 

  79. Reindl, I. et al. Impaired ventilatory efficiency in chronic heart failure: possible role of pulmonary vasoconstriction. Am. Heart J. 136, 778–785 (1998).

    CAS  PubMed  Google Scholar 

  80. Lewis, G. D., Shah, R. V., Pappagianopolas, P. P., Systrom, D. M. & Semigran, M. J. Determinants of ventilatory efficiency in heart failure: the role of right ventricular performance and pulmonary vascular tone. Circ. Heart Fail. 1, 227–233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Guazzi, M., Myers, J. & Arena, R. Cardiopulmonary exercise testing in the clinical and prognostic assessment of diastolic heart failure. J. Am. Coll. Cardiol. 46, 1883–1890 (2005).

    PubMed  Google Scholar 

  82. Arena, R. et al. Development of a ventilatory classification system in patients with heart failure. Circulation 115, 2410–2417 (2007).

    PubMed  Google Scholar 

  83. Guazzi, M. et al. Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients. J. Am. Coll. Cardiol. 50, 299–308 (2007).

    PubMed  Google Scholar 

  84. Olson, T. P. et al. Effects of acute changes in pulmonary wedge pressure on periodic breathing at rest in heart failure patients. Am. Heart J. 153, 104.e1–104.e7 (2007).

    Google Scholar 

  85. Solin, P. et al. Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation 99, 1574–1579 (1999).

    CAS  PubMed  Google Scholar 

  86. Abramson, S. V. et al. Pulmonary hypertension predicts mortality and morbidity in patients with dilated cardiomyopathy. Ann. Intern. Med. 116, 888–895 (1992).

    CAS  PubMed  Google Scholar 

  87. Rickenbacher, P. R. et al. Transplant candidates with severe left ventricular dysfunction managed with medical treatment: characteristics and survival. J. Am. Coll. Cardiol. 27, 1192–1197 (1996).

    CAS  PubMed  Google Scholar 

  88. Hosenpud, J. D., Bennett, L. E., Keck, B. M., Boucek, M. M. & Novick, R. J. The Registry of the International Society for Heart and Lung Transplantation: seventeenth official report—2000. J. Heart Lung Transplant. 19, 909–931 (2000).

    CAS  PubMed  Google Scholar 

  89. Yui, Y., Nakajima, H., Kawai, C. & Murakami, T. Prostacyclin therapy in patients with congestive heart failure. Am. J. Cardiol. 50, 320–324 (1982).

    CAS  PubMed  Google Scholar 

  90. Serra, W., Musiari, L., Ardissino, D., Gherli, T. & Montanari, A. Benefit of prostaglandin infusion in severe heart failure: preliminary clinical experience of repetitive administration. Int. J. Cardiol. doi: 10.1016/j.ijcard.2008.12.173.

    PubMed  Google Scholar 

  91. Sueta, C. A. et al. Safety and efficacy of epoprostenol in patients with severe congestive heart failure. Epoprostenol Multicenter Research Group. Am. J. Cardiol. 75, 34A–43A (1995).

    CAS  PubMed  Google Scholar 

  92. Sablotzki, A. et al. Iloprost improves hemodynamics in patients with severe chronic cardiac failure and secondary pulmonary hypertension. Can. J. Anaesth. 49, 1076–1080 (2002).

    PubMed  Google Scholar 

  93. Califf, R. M. et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am. Heart J. 134, 44–54 (1997).

    CAS  PubMed  Google Scholar 

  94. Mulder, P. et al. Role of endogenous endothelin in chronic heart failure: effect of long-term treatment with an endothelin antagonist on survival, hemodynamics, and cardiac remodeling. Circulation 96, 1976–1982 (1997).

    CAS  PubMed  Google Scholar 

  95. Wada, A. et al. Comparison of the effects of selective endothelin ETA and ETB receptor antagonists in congestive heart failure. J. Am. Coll. Cardiol. 30, 1385–1392 (1997).

    CAS  PubMed  Google Scholar 

  96. Sütsch, G. et al. Short-term oral endothelin-receptor antagonist therapy in conventionally treated patients with symptomatic severe chronic heart failure. Circulation 98, 2262–2268 (1998).

    PubMed  Google Scholar 

  97. Kalra, P. R., Moon, J. C. & Coats, A. J. Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int. J. Cardiol. 85, 195–197 (2002).

    PubMed  Google Scholar 

  98. Packer, M. et al. Clinical effects of endothelin receptor antagonism with bosentan in patients with severe chronic heart failure: results of a pilot study. J. Card. Fail. 11, 12–20 (2005).

    CAS  PubMed  Google Scholar 

  99. Kaluski, E. et al. Clinical and hemodynamic effects of bosentan dose optimization in symptomatic heart failure patients with severe systolic dysfunction, associated with secondary pulmonary hypertension—a multi-center randomized study. Cardiology 109, 273–280 (2008).

    CAS  PubMed  Google Scholar 

  100. Lüscher, T. F. et al. Hemodynamic and neurohumoral effects of selective endothelin A (ETA) receptor blockade in chronic heart failure: the Heart Failure ETA Receptor Blockade Trial (HEAT). Circulation 106, 2666–2672 (2002).

    PubMed  Google Scholar 

  101. Anand, I. et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 364, 347–354 (2004).

    CAS  PubMed  Google Scholar 

  102. McMurray, J. J. et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA 298, 2009–2019 (2007).

    CAS  PubMed  Google Scholar 

  103. Givertz, M. M. et al. Acute endothelin A receptor blockade causes selective pulmonary vasodilation in patients with chronic heart failure. Circulation 101, 2922–2927 (2000).

    CAS  PubMed  Google Scholar 

  104. Argenziano, M. et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann. Thorac. Surg. 65, 340–345 (1998).

    CAS  PubMed  Google Scholar 

  105. Kieler-Jensen, N., Lundin, S. & Ricksten, S. E. Vasodilator therapy after heart transplantation: effects of inhaled nitric oxide and intravenous prostacyclin, prostaglandin E1, and sodium nitroprusside. J. Heart Lung Transplant. 14, 436–443 (1995).

    CAS  PubMed  Google Scholar 

  106. Hare, J. M. et al. Influence of inhaled nitric oxide on systemic flow and ventricular filling pressure in patients receiving mechanical circulatory assistance. Circulation 95, 2250–2253 (1997).

    CAS  PubMed  Google Scholar 

  107. Kieler-Jensen, N. et al. Inhaled nitric oxide in the evaluation of heart transplant candidates with elevated pulmonary vascular resistance. J. Heart Lung Transplant. 13, 366–375 (1994).

    CAS  PubMed  Google Scholar 

  108. Bocchi, E. A. et al. Inhaled nitric oxide leading to pulmonary edema in stable severe heart failure. Am. J. Cardiol. 74, 70–72 (1994).

    CAS  PubMed  Google Scholar 

  109. Miller, O. I., Tang, S. F., Keech, A. & Celermajer, D. S. Rebound pulmonary hypertension on withdrawal from inhaled nitric oxide. Lancet 346, 51–52 (1995).

    CAS  PubMed  Google Scholar 

  110. Murray, F., MacLean, M. R. & Pyne, N. J. Increased expression of the cGMP-inhibited cAMP-specific (PDE3) and cGMP binding cGMP-specific (PDE5) phosphodiesterases in models of pulmonary hypertension. Br. J. Pharmacol. 137, 1187–1194 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Melenovsky, V. et al. Transpulmonary B-type natriuretic peptide uptake and cyclic guanosine monophosphate release in heart failure and pulmonary hypertension: the effects of sildenafil. J. Am. Coll. Cardiol. 54, 595–600 (2009).

    CAS  PubMed  Google Scholar 

  112. Galiè, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005).

    PubMed  Google Scholar 

  113. Guazzi, M. Clinical use of phosphodiesterase-5 inhibitors in chronic heart failure. Circ. Heart Fail. 1, 272–280 (2008).

    PubMed  Google Scholar 

  114. Alaeddini, J. et al. Efficacy and safety of sildenafil in the evaluation of pulmonary hypertension in severe heart failure. Am. J. Cardiol. 94, 1475–1477 (2004).

    CAS  PubMed  Google Scholar 

  115. Lepore, J. J. et al. Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest 127, 1647–1653 (2005).

    CAS  PubMed  Google Scholar 

  116. Guazzi, M., Tumminello, G., Di Marco, F., Fiorentini, C. & Guazzi, M. D. The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J. Am. Coll. Cardiol. 44, 2339–2348 (2004).

    CAS  PubMed  Google Scholar 

  117. Lewis, G. D. et al. Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 115, 59–66 (2007).

    CAS  PubMed  Google Scholar 

  118. Guazzi, M., Samaja, M., Arena, R., Vicenzi, M. & Guazzi, M. D. Long-term use of sildenafil in the therapeutic management of heart failure. J. Am. Coll. Cardiol. 50, 2136–2144 (2007).

    CAS  PubMed  Google Scholar 

  119. Lewis, G. D. et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116, 1555–1562 (2007).

    CAS  PubMed  Google Scholar 

  120. Behling, A. et al. Effects of 5′-phosphodiesterase four-week long inhibition with sildenafil in patients with chronic heart failure: a double-blind, placebo-controlled clinical trial. J. Card. Fail. 14, 189–197 (2008).

    CAS  PubMed  Google Scholar 

  121. Tedford, R. J. et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ. Heart Fail. 1, 213–219 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Stehlik, J. & Movsesian, M. A. Combined use of PDE5 inhibitors and nitrates in the treatment of pulmonary arterial hypertension in patients with heart failure. J. Card. Fail. 15, 31–34 (2009).

    CAS  PubMed  Google Scholar 

  123. Hunt, S. A. et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119, e391–e479 (2009).

    PubMed  Google Scholar 

  124. Verhaert, D. et al. Long-term reverse remodeling with cardiac resynchronization therapy: results of extended echocardiographic follow-up. J. Am. Coll. Cardiol. 55, 1788–1795 (2010).

    PubMed  Google Scholar 

  125. Healey, J. S., Davies, R. A. & Tang, A. S. Improvement of apparently fixed pulmonary hypertension with cardiac resynchronization therapy. J. Heart Lung Transplant. 23, 650–652 (2004).

    PubMed  Google Scholar 

  126. Bleeker, G. B. et al. Left ventricular dyssynchrony predicts right ventricular remodeling after cardiac resynchronization therapy. J. Am. Coll. Cardiol. 46, 2264–2269 (2005).

    PubMed  Google Scholar 

  127. Shalaby, A., Voigt, A., El-Saed, A. & Saba, S. Usefulness of pulmonary artery pressure by echocardiography to predict outcome in patients receiving cardiac resynchronization therapy heart failure. Am. J. Cardiol. 101, 238–241 (2008).

    PubMed  Google Scholar 

  128. Zimpfer, D. et al. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J. Thorac. Cardiovasc. Surg. 133, 689–695 (2007).

    PubMed  Google Scholar 

  129. Etz, C. D. et al. Medically refractory pulmonary hypertension: treatment with nonpulsatile left ventricular assist devices. Ann. Thorac. Surg. 83, 1697–1705 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Monzino Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M. Guazzi and R. Arena contributed to discussion of content for the article, researched data to include in the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Marco Guazzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guazzi, M., Arena, R. Pulmonary hypertension with left-sided heart disease. Nat Rev Cardiol 7, 648–659 (2010). https://doi.org/10.1038/nrcardio.2010.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing