Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The airway epithelium in asthma

Abstract

Asthma is a T lymphocyte–controlled disease of the airway wall caused by inflammation, overproduction of mucus and airway wall remodeling leading to bronchial hyperreactivity and airway obstruction. The airway epithelium is considered an essential controller of inflammatory, immune and regenerative responses to allergens, viruses and environmental pollutants that contribute to asthma pathogenesis. Epithelial cells express pattern recognition receptors that detect environmental stimuli and secrete endogenous danger signals, thereby activating dendritic cells and bridging innate and adaptive immunity. Improved understanding of the epithelium's function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of ECs on the induction of allergic sensitization by DCs.
Figure 2: Airway remodeling in the epithelial mesenchymal trophic unit.

Similar content being viewed by others

References

  1. Anderson, G.P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372, 1107–1119 (2008).

    Google Scholar 

  2. Bousquet, J. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039 (1990).

    CAS  Google Scholar 

  3. Robinson, D.S. et al. Predominant TH2-like bronchoalveolar T lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304 (1992).

    CAS  Google Scholar 

  4. Choy, D.F. et al. Gene expression patterns of TH2 inflammation and intercellular communication in asthmatic airways. J. Immunol. 186, 1861–1869 (2011).

    CAS  Google Scholar 

  5. Lloyd, C.M. & Hessel, E.M. Functions of T cells in asthma: more than just TH2 cells. Nat. Rev. Immunol. 10, 838–848 (2010).

    CAS  Google Scholar 

  6. Woodruff, P.G. et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180, 388–395 (2009).

    CAS  Google Scholar 

  7. Nair, P. et al. N. Engl. J. Med. 360, 985–993 (2009).

    CAS  Google Scholar 

  8. Wang, Y.H. et al. A novel subset of CD4+ TH2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med. 207, 2479–2491 (2010).

    CAS  Google Scholar 

  9. Tourdot, S. et al. Respiratory syncytial virus infection provokes airway remodelling in allergen-exposed mice in absence of prior allergen sensitization. Clin. Exp. Allergy 38, 1016–1024 (2008).

    CAS  Google Scholar 

  10. van Rijt, L.S. et al. Persistent activation of dendritic cells after resolution of allergic airway inflammation breaks tolerance to inhaled allergens in mice. Am. J. Respir. Crit. Care Med. 184, 303–311 (2011).

    CAS  Google Scholar 

  11. Xiao, C. et al. Defective epithelial barrier function in asthma. J. Allergy Clin. Immunol. 128, 549–556.e1–12 (2011).

    CAS  Google Scholar 

  12. Lambrecht, B.N. & Hammad, H. Biology of lung dendritic cells at the origin of asthma. Immunity 31, 412–424 (2009).

    CAS  Google Scholar 

  13. Sung, S.S. et al. A major lung CD103 (αE)-β7 integrin–positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176, 2161–2172 (2006).

    CAS  Google Scholar 

  14. Lambrecht, B.N. & Hammad, H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu. Rev. Immunol. 30, 243–270 (2012).

    CAS  Google Scholar 

  15. Hammad, H. et al. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of TH2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).

    CAS  Google Scholar 

  16. van Rijt, L.S. et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201, 981–991 (2005).

    CAS  Google Scholar 

  17. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    CAS  Google Scholar 

  18. Tan, A.M. et al. TLR4 signaling in stromal cells is critical for the initiation of allergic TH2 responses to inhaled antigen. J. Immunol. 184, 3535–3544 (2010).

    CAS  Google Scholar 

  19. Trompette, A. et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2009).

    CAS  Google Scholar 

  20. Guillot, L. et al. Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J. Biol. Chem. 279, 2712–2718 (2004).

    CAS  Google Scholar 

  21. Jia, H.P. et al. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L428–L437 (2004).

    CAS  Google Scholar 

  22. Pace, E. et al. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 124, 401–411 (2008).

    CAS  Google Scholar 

  23. Monick, M.M. et al. Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. J. Biol. Chem. 278, 53035–53044 (2003).

    CAS  Google Scholar 

  24. Poynter, M.E., Irvin, C.G. & Janssen-Heininger, Y.M.W. Rapid activation of nuclear factor-κB in airway epithelium in a murine model of allergic airway inflammation. Am. J. Pathol. 160, 1325–1334 (2002).

    CAS  Google Scholar 

  25. Yang, L. et al. Essential role of nuclear factor κB in the induction of eosinophilia in allergic airway inflammation. J. Exp. Med. 188, 1739–1750 (1998).

    CAS  Google Scholar 

  26. Ather, J.L., Hodgkins, S.R., Janssen-Heininger, Y.M. & Poynter, M.E. Airway epithelial NF-κB activation promotes allergic sensitization to an innocuous inhaled antigen. Am. J. Respir. Cell Mol. Biol. 44, 631–638 (2011).

    CAS  Google Scholar 

  27. Broide, D.H. et al. Allergen-induced peribronchial fibrosis and mucus production mediated by IκB kinase-β–dependent genes in airway epithelium. Proc. Natl. Acad. Sci. USA 102, 17723–17728 (2005).

    CAS  Google Scholar 

  28. Kelly, C., Shields, M.D., Elborn, J.S. & Schock, B.C. A20 regulation of nuclear factor-κB: perspectives for inflammatory lung disease. Am. J. Respir. Cell Mol. Biol. 44, 743–748 (2011).

    CAS  Google Scholar 

  29. Kool, M. et al. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity 35, 82–96 (2011).

    CAS  Google Scholar 

  30. El Bakkouri, K., Wullaert, A., Haegman, M., Heyninck, K. & Beyaert, R. Adenoviral gene transfer of the NF-κB inhibitory protein ABIN-1 decreases allergic airway inflammation in a murine asthma model. J. Biol. Chem. 280, 17938–17944 (2005).

    CAS  Google Scholar 

  31. Rate, A., Upham, J.W., Bosco, A., McKenna, K.L. & Holt, P.G. Airway epithelial cells regulate the functional phenotype of locally differentiating dendritic cells: implications for the pathogenesis of infectious and allergic airway disease. J. Immunol. 182, 72–83 (2009).

    CAS  Google Scholar 

  32. Nathan, A.T., Peterson, E.A., Chakir, J. & Wills-Karp, M. Innate immune responses of airway epithelium to house dust mite are mediated through β-glucan–dependent pathways. J. Allergy Clin. Immunol. 123, 612–618 (2009).

    CAS  Google Scholar 

  33. Walter, M.J., Kajiwara, N., Karanja, P., Castro, M. & Holtzman, M.J. Interleukin-12 p40 production by barrier epithelial cells during airway inflammation. J. Exp. Med. 193, 339–352 (2001).

    CAS  Google Scholar 

  34. Ramadas, R.A., Ewart, S.L., Medoff, B.D. & LeVine, A.M. Interleukin-1–family member 9 stimulates chemokine production and neutrophil influx in mouse lungs. Am. J. Respir. Cell Mol. Biol. 44, 134–145 (2011).

    CAS  Google Scholar 

  35. Chustz, R.T. et al. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 45, 145–153 (2011).

    CAS  Google Scholar 

  36. Vigne, S. et al. IL-36R ligands are potent regulators of dendritic and T cells. Blood 118, 5813–5823 (2011).

    CAS  Google Scholar 

  37. Besnard, A.G. et al. IL-33–activated dendritic cells are critical for allergic airway inflammation. Eur. J. Immunol. 41, 1675–1686 (2011).

    CAS  Google Scholar 

  38. Rank, M.A. et al. IL-33–activated dendritic cells induce an atypical TH2-type response. J. Allergy Clin. Immunol. 123, 1047–1054 (2009).

    CAS  Google Scholar 

  39. Lambrecht, B.N. et al. Myeloid dendritic cells induce TH2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551–559 (2000).

    CAS  Google Scholar 

  40. Préfontaine, D. et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J. Allergy Clin. Immunol. 125, 752–754 (2010).

    Google Scholar 

  41. Wang, Y.H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC–activated TH2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    CAS  Google Scholar 

  42. Angkasekwinai, P. et al. Interleukin-25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    CAS  Google Scholar 

  43. Goswami, S. et al. Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nat. Immunol. 10, 496–503 (2009).

    CAS  Google Scholar 

  44. Kaiko, G.E., Phipps, S., Angkasekwinai, P., Dong, C. & Foster, P.S. NK cell deficiency predisposes to viral-induced TH2-type allergic inflammation via epithelial-derived IL-25. J. Immunol. 185, 4681–4690 (2010).

    CAS  Google Scholar 

  45. Stämpfli, M.R. et al. GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J. Clin. Invest. 102, 1704–1714 (1998).

    Google Scholar 

  46. Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6, 1047–1053 (2005).

    CAS  Google Scholar 

  47. Cates, E.C. et al. Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF–mediated mechanism. J. Immunol. 173, 6384–6392 (2004).

    CAS  Google Scholar 

  48. Ohta, K. et al. Diesel exhaust particulate induces airway hyperresponsiveness in a murine model: essential role of GM-CSF. J. Allergy Clin. Immunol. 104, 1024–1030 (1999).

    CAS  Google Scholar 

  49. Bleck, B., Tse, D.B., Jaspers, I., Curotto de Lafaille, M.A. & Reibman, J. Diesel exhaust particle–exposed human bronchial epithelial cells induce dendritic cell maturation. J. Immunol. 176, 7431–7437 (2006).

    CAS  Google Scholar 

  50. Ritz, S.A., Stampfli, M.R., Davies, D.E., Holgate, S.T. & Jordana, M. On the generation of allergic airway diseases: from GM-CSF to Kyoto. Trends Immunol. 23, 396–402 (2002).

    CAS  Google Scholar 

  51. Ying, S. et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of TH2-attracting chemokines and disease severity. J. Immunol. 174, 8183–8190 (2005).

    CAS  Google Scholar 

  52. Semlali, A., Jacques, E., Koussih, L., Gounni, A.S. & Chakir, J. Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13–dependent pathway. J. Allergy Clin. Immunol. 125, 844–850 (2010).

    CAS  Google Scholar 

  53. Harada, M. et al. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am. J. Respir. Cell Mol. Biol. 44, 787–793 (2011).

    CAS  Google Scholar 

  54. Kouzaki, H., O'Grady, S.M., Lawrence, C.B. & Kita, H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J. Immunol. 183, 1427–1434 (2009).

    CAS  Google Scholar 

  55. Bleck, B., Tse, D.B., Gordon, T., Ahsan, M.R. & Reibman, J. Diesel exhaust particle-treated human bronchial epithelial cells upregulate Jagged-1 and OX40 ligand in myeloid dendritic cells via thymic stromal lymphopoietin. J. Immunol. 185, 6636–6645 (2010).

    CAS  Google Scholar 

  56. Reardon, C. et al. Thymic stromal lymphopoetin-induced expression of the endogenous inhibitory enzyme SLPI mediates recovery from colonic inflammation. Immunity 35, 223–235 (2011).

    CAS  Google Scholar 

  57. Marino, R. et al. Secretory leukocyte protease inhibitor plays an important role in the regulation of allergic asthma in mice. J. Immunol. 186, 4433–4442 (2011).

    CAS  Google Scholar 

  58. Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and TH2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    CAS  Google Scholar 

  59. Schneider, E. et al. IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production. J. Immunol. 183, 3591–3597 (2009).

    CAS  Google Scholar 

  60. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  Google Scholar 

  61. Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    CAS  Google Scholar 

  62. Siracusa, M.C. et al. TSLP promotes interleukin-3–independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229–233 (2011).

    CAS  Google Scholar 

  63. Chang, Y.J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    CAS  Google Scholar 

  64. Monticelli, L.A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    CAS  Google Scholar 

  65. Matsukura, S. et al. Interleukin-13 upregulates eotaxin expression in airway epithelial cells by a STAT6-dependent mechanism. Am. J. Respir. Cell Mol. Biol. 24, 755–761 (2001).

    CAS  Google Scholar 

  66. Lordan, J.L. et al. Cooperative effects of TH2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J. Immunol. 169, 407–414 (2002).

    CAS  Google Scholar 

  67. Mitchell, C., Provost, K., Niu, N., Homer, R. & Cohn, L. IFN-γ acts on the airway epithelium to inhibit local and systemic pathology in allergic airway disease. J. Immunol. 187, 3815–3820 (2011).

    CAS  Google Scholar 

  68. Kool, M. et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34, 527–540 (2011).

    CAS  Google Scholar 

  69. Idzko, M. et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat. Med. 13, 913–919 (2007).

    CAS  Google Scholar 

  70. Müller, T. et al. The purinergic receptor P2Y2 receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy 65, 1545–1553 (2010).

    Google Scholar 

  71. Boldogh, I. et al. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Invest. 115, 2169–2179 (2005).

    CAS  Google Scholar 

  72. Rangasamy, T. et al. Nuclear erythroid 2 p45-related factor 2 inhibits the maturation of murine dendritic cells by ragweed extract. Am. J. Respir. Cell Mol. Biol. 43, 276–285 (2010).

    CAS  Google Scholar 

  73. Ckless, K., Hodgkins, S.R., Ather, J.L., Martin, R. & Poynter, M.E. Epithelial, dendritic, and CD4+ T cell regulation of and by reactive oxygen and nitrogen species in allergic sensitization. Biochim. Biophys. Acta 1810, 1025–1034 (2011).

    CAS  Google Scholar 

  74. Kim, S.R. et al. HIF-1α inhibition ameliorates an allergic airway disease via VEGF suppression in bronchial epithelium. Eur. J. Immunol. 40, 2858–2869 (2010).

    CAS  Google Scholar 

  75. Lee, C.G. et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat. Med. 10, 1095–1103 (2004).

    CAS  Google Scholar 

  76. Medoff, B.D. et al. CARMA3 mediates lysophosphatidic acid–stimulated cytokine secretion by bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 40, 286–294 (2009).

    CAS  Google Scholar 

  77. Liang, J. et al. Role of hyaluronan and hyaluronan-binding proteins in human asthma. J. Allergy Clin. Immunol. 128, 403–411.3 (2011).

    CAS  Google Scholar 

  78. Schmidt, L.M. et al. Bronchial epithelial cell–derived prostaglandin E2 dampens the reactivity of dendritic cells. J. Immunol. 186, 2095–2105 (2011).

    CAS  Google Scholar 

  79. Karp, C.L. et al. Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat. Immunol. 5, 388–392 (2004).

    CAS  Google Scholar 

  80. Xu, J., Park, P.W., Kheradmand, F. & Corry, D.B. Endogenous attenuation of allergic lung inflammation by syndecan-1. J. Immunol. 174, 5758–5765 (2005).

    CAS  Google Scholar 

  81. Nold, M.F. et al. IL-37 is a fundamental inhibitor of innate immunity. Nat. Immunol. 11, 1014–1022 (2010).

    CAS  Google Scholar 

  82. Mattes, J., Collison, A., Plank, M., Phipps, S. & Foster, P.S. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl. Acad. Sci. USA 106, 18704–18709 (2009).

    CAS  Google Scholar 

  83. Wan, H. et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Invest. 104, 123–133 (1999).

    CAS  Google Scholar 

  84. Lackie, P.M., Baker, J.E., Gunthert, U. & Holgate, S.T. Expression of CD44 isoforms is increased in the airway epithelium of asthmatic subjects. Am. J. Respir. Cell Mol. Biol. 16, 14–22 (1997).

    CAS  Google Scholar 

  85. Hackett, T.L. et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-β1. Am. J. Respir. Crit. Care Med. 180, 122–133 (2009).

    CAS  Google Scholar 

  86. de Boer, W.I. et al. Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Can. J. Physiol. Pharmacol. 86, 105–112 (2008).

    CAS  Google Scholar 

  87. Nawijn, M.C., Hackett, T.L., Postma, D.S., van Oosterhout, A.J. & Heijink, I.H. E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends Immunol. 32, 248–255 (2011).

    CAS  Google Scholar 

  88. Jiang, A. et al. Disruption of E-cadherin–mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27, 610–624 (2007).

    Google Scholar 

  89. Heijink, I.H. et al. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor–dependent TH2 cell–promoting activity. J. Immunol. 178, 7678–7685 (2007).

    CAS  Google Scholar 

  90. Koppelman, G.H. et al. Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. Am. J. Respir. Crit. Care Med. 180, 929–935 (2009).

    CAS  Google Scholar 

  91. Antony, A.B., Tepper, R.S. & Mohammed, K.A. Cockroach extract antigen increases bronchial airway epithelial permeability. J. Allergy Clin. Immunol. 110, 589–595 (2002).

    Google Scholar 

  92. Runswick, S., Mitchell, T., Davies, P., Robinson, C. & Garrod, D.R. Pollen proteolytic enzymes degrade tight junctions. Respirology 12, 834–842 (2007).

    Google Scholar 

  93. Chen, J.C. et al. The protease allergen Pen c 13 induces allergic airway inflammation and changes in epithelial barrier integrity and function in a murine model. J. Biol. Chem. 286, 26667–26679 (2011).

    CAS  Google Scholar 

  94. Olivera, D.S., Boggs, S.E., Beenhouwer, C., Aden, J. & Knall, C. Cellular mechanisms of mainstream cigarette smoke–induced lung epithelial tight junction permeability changes in vitro. Inhal. Toxicol. 19, 13–22 (2007).

    CAS  Google Scholar 

  95. Rezaee, F. et al. Polyinosinic:polycytidylic acid induces protein kinase D–dependent disassembly of apical junctions and barrier dysfunction in airway epithelial cells. J. Allergy Clin. Immunol. 128, 1216–1224.e11 (2011).

    CAS  Google Scholar 

  96. Heijink, I.H., van Oosterhout, A. & Kapus, A. Epidermal growth factor receptor signalling contributes to house dust mite–induced epithelial barrier dysfunction. Eur. Respir. J. 36, 1016–1026 (2010).

    CAS  Google Scholar 

  97. Sidhaye, V.K., Chau, E., Breysse, P.N. & King, L.S. Septin-2 mediates airway epithelial barrier function in physiologic and pathologic conditions. Am. J. Respir. Cell Mol. Biol. 45, 120–126 (2011).

    CAS  Google Scholar 

  98. Ahdieh, M., Vandenbos, T. & Youakim, A. Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-γ. Am. J. Physiol. Cell Physiol. 281, C2029–C2038 (2001).

    CAS  Google Scholar 

  99. Flood-Page, P. et al. Anti–IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest. 112, 1029–1036 (2003).

    CAS  Google Scholar 

  100. Le Cras, T.D. et al. Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L414–L421 (2011).

    CAS  Google Scholar 

  101. Holgate, S.T. et al. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J. Allergy Clin. Immunol. 105, 193–204 (2000).

    CAS  Google Scholar 

  102. Sidhu, S.S. et al. Roles of epithelial cell–derived periostin in TGF-β activation, collagen production, and collagen gel elasticity in asthma. Proc. Natl. Acad. Sci. USA 107, 14170–14175 (2010).

    CAS  Google Scholar 

  103. Song, D.J. et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J. Immunol. 183, 5333–5341 (2009).

    CAS  Google Scholar 

  104. Doherty, T.A. et al. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat. Med. 17, 596–603 (2011).

    CAS  Google Scholar 

  105. Cho, J.Y. et al. Chronic OVA allergen challenged TNF p55/p75 receptor deficient mice have reduced airway remodeling. Int. Immunopharmacol. 11, 1038–1044 (2011).

    CAS  Google Scholar 

  106. Lee, S.H., Eren, M., Vaughan, D.E., Schleimer, R.P. & Cho, S.A. PAI-1 inhibitor reduces airway remodeling in a murine model of chronic asthma. Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2011-0369O (2012).

  107. Saglani, S. et al. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. Am. J. Respir. Crit. Care Med. 176, 858–864 (2007).

    Google Scholar 

  108. Malmström, K. et al. Lung function, airway remodelling and inflammation in symptomatic infants: outcome at 3 years. Thorax 66, 157–162 (2011).

    Google Scholar 

  109. Hackett, T.L. et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to RSV and air pollution. Am. J. Respir. Cell Mol. Biol. 45, 1090–1100 (2011).

    CAS  Google Scholar 

  110. Puddicombe, S.M. et al. Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J. 14, 1362–1374 (2000).

    CAS  Google Scholar 

  111. Enomoto, Y. et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J. Allergy Clin. Immunol. 124, 913–920.e1–7 (2009).

    CAS  Google Scholar 

  112. Royce, S.G., Lim, C., Muljadi, R.C. & Tang, M.L. Trefoil factor 2 regulates airway remodeling in animal models of asthma. J. Asthma 48, 653–659 (2011).

    CAS  Google Scholar 

  113. Dabbagh, K. et al. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J. Immunol. 162, 6233–6237 (1999).

    CAS  Google Scholar 

  114. Kuperman, D.A. et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med. 8, 885–889 (2002).

    CAS  Google Scholar 

  115. Wills-Karp, M. et al. Interleukin-13: Central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    CAS  Google Scholar 

  116. Hirota, N. et al. Histamine may induce airway remodeling through release of epidermal growth factor receptor ligands from bronchial epithelial cells. FASEB J. 26, 1704–1716 (1998).

    Google Scholar 

  117. Chen, G. et al. Foxa2 programs TH2 cell–mediated innate immunity in the developing lung. J. Immunol. 184, 6133–6141 (2010).

    CAS  Google Scholar 

  118. Gregorieff, A. et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 137, 1333–1345.e1–3 (2009).

    CAS  Google Scholar 

  119. Hasnain, S.Z., Thornton, D.J. & Grencis, R.K. Changes in the mucosal barrier during acute and chronic Trichuris muris infection. Parasite Immunol. 33, 45–55 (2011).

    CAS  Google Scholar 

  120. Phythian-Adams, A.T. et al. CD11c depletion severely disrupts TH2 induction and development in vivo. J. Exp. Med. 207, 2089–2096 (2010).

    CAS  Google Scholar 

  121. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  Google Scholar 

  122. Martino, M.E. et al. Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box–binding protein-1. J. Biol. Chem. 284, 14904–14913 (2009).

    CAS  Google Scholar 

  123. Martinon, F., Chen, X., Lee, A.H. & Glimcher, L.H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010).

    CAS  Google Scholar 

  124. Moffatt, M.F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    CAS  Google Scholar 

  125. Cantero-Recasens, G., Fandos, C., Rubio-Moscardo, F., Valverde, M.A. & Vicente, R. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum. Mol. Genet. 19, 111–121 (2010).

    CAS  Google Scholar 

  126. Busse, W.W., Lemanske, R.F. Jr. & Gern, J.E. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376, 826–834 (2010).

    Google Scholar 

  127. Wark, P.A. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 201, 937–947 (2005).

    CAS  Google Scholar 

  128. Contoli, M. et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nat. Med. 12, 1023–1026 (2006).

    CAS  Google Scholar 

  129. Moriwaki, A. et al. IL-13 suppresses double-stranded RNA-induced IFN-λ production in lung cells. Biochem. Biophys. Res. Commun. 404, 922–927 (2011).

    CAS  Google Scholar 

  130. Koltsida, O. et al. IL-28A (IFN-λ2) modulates lung DC function to promote TH1 immune skewing and suppress allergic airway disease. EMBO Mol. Med. 3, 348–361 (2011).

    CAS  Google Scholar 

  131. Agresti, A., Lupo, R., Bianchi, M.E. & Muller, S. HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem. Biophys. Res. Commun. 302, 421–426 (2003).

    CAS  Google Scholar 

  132. Torres, D. et al. Double-stranded RNA exacerbates pulmonary allergic reaction through TLR3: implication of airway epithelium and dendritic cells. J. Immunol. 185, 451–459 (2010).

    CAS  Google Scholar 

  133. Monick, M.M. et al. Respiratory syncytial virus synergizes with TH2 cytokines to induce optimal levels of TARC/CCL17. J. Immunol. 179, 1648–1658 (2007).

    CAS  Google Scholar 

  134. Woodruff, P.G. et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA 104, 15858–15863 (2007).

    CAS  Google Scholar 

  135. Xirakia, C. et al. Toll-like receptor 7–triggered immune response in the lung mediates acute and long-lasting suppression of experimental asthma. Am. J. Respir. Crit. Care Med. 181, 1207–1216 (2010).

    CAS  Google Scholar 

  136. Song, D.J. et al. Toll-like receptor 9 agonist inhibits airway inflammation, remodeling and hyperreactivity in mice exposed to chronic environmental tobacco smoke and allergen. Int. Arch. Allergy Immunol. 151, 285–296 (2010).

    CAS  Google Scholar 

  137. Hertz, C.J. et al. Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human β-defensin 2. J. Immunol. 171, 6820–6826 (2003).

    CAS  Google Scholar 

  138. Sha, Q., Truong-Tran, A.Q., Plitt, J.R., Beck, L.A. & Schleimer, R.P. Activation of airway epithelial cells by Toll-like receptor agonists. Am. J. Respir. Cell Mol. Biol. 31, 358–364 (2004).

    Google Scholar 

  139. Saito, T., Yamamoto, T., Kazawa, T., Gejyo, H. & Naito, M. Expression of Toll-like receptor 2 and 4 in lipopolysaccharide-induced lung injury in mouse. Cell Tissue Res. 321, 75–88 (2005).

    CAS  Google Scholar 

  140. Uehara, A., Fujimoto, Y., Fukase, K. & Takada, H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44, 3100–3111 (2007).

    CAS  Google Scholar 

  141. Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).

    CAS  Google Scholar 

  142. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    CAS  Google Scholar 

  143. Ather, J.L. et al. Serum amyloid A activates the NLRP3 inflammasome and promotes TH17 allergic asthma in mice. J. Immunol. 187, 64–73 (2011).

    CAS  Google Scholar 

  144. Provoost, S. et al. NLRP3/caspase-1–independent IL-1β production mediates diesel exhaust particle-induced pulmonary inflammation. J. Immunol. 187, 3331–3337 (2011).

    CAS  Google Scholar 

  145. Finkelman, M.A., Lempitski, S.J. & Slater, J.E. β-glucans in standardized allergen extracts. J. Endotoxin Res. 12, 241–245 (2006).

    CAS  Google Scholar 

  146. Barrett, N.A. et al. Dectin-2 mediates TH2 immunity through the generation of cysteinyl leukotrienes. J. Exp. Med. 208, 593–604 (2011).

    CAS  Google Scholar 

  147. Adam, E. et al. The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2–independent mechanism. J. Biol. Chem. 281, 6910–6923 (2006).

    CAS  Google Scholar 

  148. Pichavant, M. et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J. Allergy Clin. Immunol. 115, 771–778 (2005).

    CAS  Google Scholar 

  149. Tomee, J.F., van Weissenbruch, R., de Monchy, J.G. & Kauffman, H.F. Interactions between inhalant allergen extracts and airway epithelial cells: effect on cytokine production and cell detachment. J. Allergy Clin. Immunol. 102, 75–85 (1998).

    CAS  Google Scholar 

  150. Page, K., Ledford, J.R., Zhou, P., Dienger, K. & Wills-Karp, M. Mucosal sensitization to German cockroach involves protease-activated receptor-2. Respir. Res. 11, 62 (2010).

    Google Scholar 

  151. Whitsett, J.A., Haitchi, H.M. & Maeda, Y. Intersections between pulmonary development and disease. Am. J. Respir. Crit. Care Med. 184, 401–406 (2011).

    CAS  Google Scholar 

  152. Volckaert, T. et al. Parabronchial smooth muscle constitutes an airway epithelial stem-cell niche in the mouse lung after injury. J. Clin. Invest. 121, 4409–4419 (2011).

    CAS  Google Scholar 

  153. Sivaprasad, U. et al. A nonredundant role for mouse Serpinb3a in the induction of mucus production in asthma. J. Allergy Clin. Immunol. 127, 254–261 (2011).

    CAS  Google Scholar 

  154. Park, K.S. et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J. Clin. Invest. 117, 978–988 (2007).

    CAS  Google Scholar 

  155. Chen, G. et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J. Clin. Invest. 119, 2914–2924 (2009).

    CAS  Google Scholar 

  156. Maeda, Y. et al. Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and TH2 inflammation. Am. J. Respir. Crit. Care Med. 184, 421–429 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

B.N.L. is a recipient of an Odysseus Grant of the Flemish Organization for Scientific Research (FWO) and recipient of an ERC Consolidator grant and a UGent Multidisciplinary Research Partnership grant (Group-ID). H.H. and B.N.L. are supported by National Institutes of Health grant 5R21AI083690-02. H.H. is a recipient of an FWO program grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart N Lambrecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrecht, B., Hammad, H. The airway epithelium in asthma. Nat Med 18, 684–692 (2012). https://doi.org/10.1038/nm.2737

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing