Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction

Abstract

Emerging evidence suggests that the T helper 17 (TH17) subset of αβ T cells contributes to the development of allergic asthma. In this study, we found that mice lacking the αvβ8 integrin on dendritic cells did not generate TH17 cells in the lung and were protected from airway hyper-responsiveness in response to house dust mite and ovalbumin sensitization and challenge. Because loss of TH17 cells inhibited airway narrowing without any obvious effects on airway inflammation or epithelial morphology, we examined the direct effects of TH17 cytokines on mouse and human airway smooth muscle function. Interleukin-17A (IL-17A), but not IL-17F or IL-22, enhanced contractile force generation of airway smooth muscle through an IL-17 receptor A (IL-17RA)–IL-17RC, nuclear factor κ light-chain enhancer of activated B cells (NF-κB)–ras homolog gene family, member A (RhoA)–Rho-associated coiled-coil containing protein kinase 2 (ROCK2) signaling cascade. Mice lacking integrin αvβ8 on dendritic cells showed impaired activation of this pathway after ovalbumin sensitization and challenge, and the diminished contraction of the tracheal rings in these mice was reversed by IL-17A. These data indicate that the IL-17A produced by TH17 cells contributes to allergen-induced airway hyper-responsiveness through direct effects on airway smooth muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Itgb8flox/flox; CD11c-Cre mice are protected from AHR and do not develop TH17 cells in the lung.
Figure 2: IL-17A enhances mouse and human ASM contraction.
Figure 3: IL-17A–mediated enhanced ASM contraction is not caused by contaminants or TNF-α release.
Figure 4: IL-17A activates NF-κB–RhoA-ROCK2 signaling in ASM.
Figure 5: IL-17F and IL-22 do not enhance ASM contraction, and IL-17A signals through IL-17RC.
Figure 6: Impaired activation of an IL-17A signaling pathway in Itgb8flox/flox; CD11c-Cre mice.

Similar content being viewed by others

References

  1. Lloyd, C.M. & Hessel, E.M. Functions of T cells in asthma: more than just T(H)2 cells. Nat. Rev. Immunol. 10, 838–848 (2010).

    Article  CAS  Google Scholar 

  2. Grünig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  Google Scholar 

  3. Alcorn, J.F., Crowe, C.R. & Kolls, J.K. TH17 cells in asthma and COPD. Annu. Rev. Physiol. 72, 495–516 (2010).

    Article  CAS  Google Scholar 

  4. Souwer, Y., Szegedi, K., Kapsenberg, M.L. & de Jong, E.C. IL-17 and IL-22 in atopic allergic disease. Curr. Opin. Immunol. 22, 821–826 (2010).

    Article  CAS  Google Scholar 

  5. Lajoie, S. et al. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat. Immunol. 11, 928–935 (2010).

    Article  CAS  Google Scholar 

  6. Littman, D.R. & Rudensky, A.Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    Article  CAS  Google Scholar 

  7. Finkelman, F.D., Hogan, S.P., Hershey, G.K., Rothenberg, M.E. & Wills-Karp, M. Importance of cytokines in murine allergic airway disease and human asthma. J. Immunol. 184, 1663–1674 (2010).

    Article  CAS  Google Scholar 

  8. Bullens, D.M. et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res. 7, 135 (2006).

    Article  Google Scholar 

  9. de Faria, I.C., de Faria, E.J., Toro, A.A., Ribeiro, J.D. & Bertuzzo, C.S. Association of TGF-β1, CD14, IL-4, IL-4R and ADAM33 gene polymorphisms with asthma severity in children and adolescents. J. Pediatr. (Rio J.) 84, 203–210 (2008).

    Google Scholar 

  10. Pulleyn, L.J., Newton, R., Adcock, I.M. & Barnes, P.J. TGFβ1 allele association with asthma severity. Hum. Genet. 109, 623–627 (2001).

    Article  CAS  Google Scholar 

  11. Silverman, E.S. et al. Transforming growth factor-β1 promoter polymorphism C-509T is associated with asthma. Am. J. Respir. Crit. Care Med. 169, 214–219 (2004).

    Article  Google Scholar 

  12. Zeyrek, D. et al. Association of interleukin-1β and interleukin-1 receptor antagonist gene polymorphisms in Turkish children with atopic asthma. Allergy Asthma Proc. 29, 468–474 (2008).

    Article  CAS  Google Scholar 

  13. Settin, A., Zedan, M., Farag, M., Ezz El Regal, M. & Osman, E. Gene polymorphisms of IL-6(-174) G/C and IL-1Ra VNTR in asthmatic children. Indian J. Pediatr. 75, 1019–1023 (2008).

    Article  Google Scholar 

  14. Mangan, P.R. et al. Transforming growth factor-β induces development of the T(H)17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  15. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  16. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  17. Yang, X.O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    Article  CAS  Google Scholar 

  18. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  Google Scholar 

  19. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  Google Scholar 

  20. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell–mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  Google Scholar 

  21. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  Google Scholar 

  22. Manel, N., Unutmaz, D. & Littman, D.R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. 9, 641–649 (2008).

    Article  CAS  Google Scholar 

  23. Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat. Immunol. 9, 650–657 (2008).

    Article  CAS  Google Scholar 

  24. Annes, J.P., Munger, J.S. & Rifkin, D.B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

    Article  CAS  Google Scholar 

  25. Melton, A.C. et al. Expression of αvβ8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J. Clin. Invest. 120, 4436–4444 (2010).

    Article  CAS  Google Scholar 

  26. Travis, M.A. et al. Loss of integrin α(v) β8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).

    Article  CAS  Google Scholar 

  27. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  CAS  Google Scholar 

  28. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  Google Scholar 

  29. Blaho, V.A., Buczynski, M.W., Dennis, E.A. & Brown, C.R. Cyclooxygenase-1 orchestrates germinal center formation and antibody class-switch via regulation of IL-17. J. Immunol. 183, 5644–5653 (2009).

    Article  CAS  Google Scholar 

  30. Lin, Y. et al. Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity 31, 799–810 (2009).

    Article  CAS  Google Scholar 

  31. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    Article  CAS  Google Scholar 

  32. Tliba, O. et al. IL-13 enhances agonist-evoked calcium signals and contractile responses in airway smooth muscle. Br. J. Pharmacol. 140, 1159–1162 (2003).

    Article  CAS  Google Scholar 

  33. Parris, J.R., Cobban, H.J., Littlejohn, A.F., MacEwan, D.J. & Nixon, G.F. Tumour necrosis factor-α activates a calcium sensitization pathway in guinea-pig bronchial smooth muscle. J. Physiol. (Lond.) 518, 561–569 (1999).

    Article  CAS  Google Scholar 

  34. Barnes, P.J., Cuss, F.M. & Palmer, J.B. The effect of airway epithelium on smooth muscle contractility in bovine trachea. Br. J. Pharmacol. 86, 685–691 (1985).

    Article  CAS  Google Scholar 

  35. Barnett, K., Jacoby, D.B., Nadel, J.A. & Lazarus, S.C. The effects of epithelial cell supernatant on contractions of isolated canine tracheal smooth muscle. Am. Rev. Respir. Dis. 138, 780–783 (1988).

    Article  CAS  Google Scholar 

  36. Somlyo, A.P. & Somlyo, A.V. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. (Lond.) 522, 177–185 (2000).

    Article  CAS  Google Scholar 

  37. Sonder, S.U. et al. IL-17-induced NF-κB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem. 286, 12881–12890 (2011).

    Article  CAS  Google Scholar 

  38. Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    Article  CAS  Google Scholar 

  39. Goto, K. et al. The proximal STAT6 and NF-κB sites are responsible for IL-13– and TNF-α–induced RhoA transcriptions in human bronchial smooth muscle cells. Pharmacol. Res. 61, 466–472 (2010).

    Article  CAS  Google Scholar 

  40. Shimada, H. & Rajagopalan, L.E. Rho kinase-2 activation in human endothelial cells drives lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-κB p65. J. Biol. Chem. 285, 12536–12542 (2010).

    Article  CAS  Google Scholar 

  41. Chiba, Y. & Misawa, M. The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness. J. Smooth Muscle Res. 40, 155–167 (2004).

    Article  Google Scholar 

  42. Khromov, A., Choudhury, N., Stevenson, A.S., Somlyo, A.V. & Eto, M. Phosphorylation-dependent autoinhibition of myosin light chain phosphatase accounts for Ca2+ sensitization force of smooth muscle contraction. J. Biol. Chem. 284, 21569–21579 (2009).

    Article  CAS  Google Scholar 

  43. Ely, L.K., Fischer, S. & Garcia, K.C. Structural basis of receptor sharing by interleukin 17 cytokines. Nat. Immunol. 10, 1245–1251 (2009).

    Article  CAS  Google Scholar 

  44. Patil, S.B. & Bitar, K.N. RhoA- and PKC-α–mediated phosphorylation of MYPT and its association with HSP27 in colonic smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G83–G95 (2006).

    Article  CAS  Google Scholar 

  45. Ohama, T., Hori, M., Sato, K., Ozaki, H. & Karaki, H. Chronic treatment with interleukin-1β attenuates contractions by decreasing the activities of CPI-17 and MYPT-1 in intestinal smooth muscle. J. Biol. Chem. 278, 48794–48804 (2003).

    Article  CAS  Google Scholar 

  46. Chen, X.Y., Dun, J.N., Miao, Q.F. & Zhang, Y.J. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses 5-hydroxytryptamine–induced pulmonary artery smooth muscle cell proliferation via JNK and ERK1/2 pathway. Pharmacology 83, 67–79 (2009).

    Article  CAS  Google Scholar 

  47. McKinley, L. et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol. 181, 4089–4097 (2008).

    Article  CAS  Google Scholar 

  48. Schnyder-Candrian, S. et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 203, 2715–2725 (2006).

    Article  CAS  Google Scholar 

  49. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17–deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    Article  CAS  Google Scholar 

  50. Wilson, R.H. et al. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 180, 720–730 (2009).

    Article  CAS  Google Scholar 

  51. Oda, N. et al. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. Am. J. Respir. Crit. Care Med. 171, 12–18 (2005).

    Article  Google Scholar 

  52. Hellings, P.W. et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am. J. Respir. Cell Mol. Biol. 28, 42–50 (2003).

    Article  CAS  Google Scholar 

  53. Song, C. et al. IL-17–producing alveolar macrophages mediate allergic lung inflammation related to asthma. J. Immunol. 181, 6117–6124 (2008).

    Article  CAS  Google Scholar 

  54. Willis-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    Article  Google Scholar 

  55. Grünig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  Google Scholar 

  56. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  Google Scholar 

  57. Bai, Y. & Sanderson, M.J. Modulation of the Ca2+ sensitivity of airway smooth muscle cells in murine lung slices. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L208–L221 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants HL64353, HL53949, HL083950, AI024674 and U19 AI077439 (to D.S.), a NIH Ruth L. Kirschstein National Research Service Award HL095314 (to A.C.M.), an American Lung Association of California Research Training Fellowship Award (to A.C.M.) and funds from the University of California, San Francisco (UCSF) Strategic Asthma Basic Research Center. Deidentified human lung was kindly provided by M. Matthay (UCSF) and P. Wolters (UCSF). IL-17RC knockout mice were kindly provided by W. Ouyang (Genentech).

Author information

Authors and Affiliations

Authors

Contributions

M.K. designed the study, generated all of the tracheal ring contraction and western blot data, performed analyses and wrote the manuscript. A.C.M. designed the study, generated all of the flow cytometry and recall data, performed analyses and wrote the manuscript. C.C. generated all of the lung slice data, performed analyses and wrote the manuscript. K.E.H., X.R., Y.W. and X.B. performed the asthma physiology studies. M.B.E. designed and constructed the muscle bath and provided expertise in the methodology and modifications for the analysis of mouse tracheal ring contraction. J.T.L. and K.A. provided substantial intellectual contribution. X.H. and D.S. oversaw the design and interpretation of all studies described and oversaw the writing of the manuscript.

Corresponding author

Correspondence to Dean Sheppard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudo, M., Melton, A., Chen, C. et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat Med 18, 547–554 (2012). https://doi.org/10.1038/nm.2684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing