Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The many paths to asthma: phenotype shaped by innate and adaptive immunity

Abstract

Asthma is a very complex and heterogeneous disease that is characterized by airway inflammation and airway hyper-reactivity (AHR). The pathogenesis of asthma is associated with environmental factors, many cell types, and several molecular and cellular pathways. These include allergic, non-allergic and intrinsic pathways, which involve many cell types and cytokines. Animal models of asthma have helped to clarify some of the underlying mechanisms of asthma, demonstrating the importance of T helper type 2 (TH2)-driven allergic responses, as well as of the non-allergic and intrinsic pathways, and contributing to understanding of the heterogeneity of asthma. Further study of these many pathways to asthma will greatly increase understanding of the distinct asthma phenotypes, and such studies may lead to new therapies for this important public health problem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The heterogeneity of asthma.
Figure 2: APCs in the lung.
Figure 3: Newly identified cells of the innate immune system and pathways in asthma.

Similar content being viewed by others

References

  1. Wilson, D.H. et al. Trends in asthma prevalence and population changes in South Australia, 1990–2003. Med. J. Aust. 184, 226–229 (2006).

    PubMed  Google Scholar 

  2. Umetsu, D.T., McIntire, J.J., Akbari, O., Macaubas, C. & DeKruyff, R.H. Asthma: an epidemic of dysregulated immunity. Nat. Immunol. 3, 715–720 (2002).

    CAS  PubMed  Google Scholar 

  3. von Mutius, E. Gene-environment interactions in asthma. J. Allergy Clin. Immunol. 123, 3–11 (2009).

    PubMed  Google Scholar 

  4. Wang, W., Li, J.J., Foster, P.S., Hansbro, P.M. & Yang, M. Potential therapeutic targets for steroid-resistant asthma. Curr. Drug Targets published online, doi:10.2174/1389210204120454501 (23 April 2010).

  5. Pichavant, M. et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J. Exp. Med. 205, 385–393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robays, L.J., Maes, T., Joos, G.F. & Vermaelen, K.Y. Between a cough and a wheeze: dendritic cells at the nexus of tobacco smoke-induced allergic airway sensitization. Mucosal Immunol. 2, 206–219 (2009).

    CAS  PubMed  Google Scholar 

  7. Li, N., Hao, M., Phalen, R.F., Hinds, W.C. & Nel, A.E. Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 109, 250–265 (2003).

    CAS  PubMed  Google Scholar 

  8. Johnston, R.A. et al. Allergic airway responses in obese mice. Am. J. Respir. Crit. Care Med. 176, 650–658 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, X.S., Wu, A.Y., Leung, P.S. & Lau, H.Y. PGE suppresses excessive anti-IgE induced cysteinyl leucotrienes production in mast cells of patients with aspirin exacerbated respiratory disease. Allergy 62, 620–627 (2007).

    PubMed  Google Scholar 

  10. Carlsen, K.H. & Carlsen, K.C. Exercise-induced asthma. Paediatr. Respir. Rev. 3, 154–160 (2002).

    PubMed  Google Scholar 

  11. Robinson, D.S. et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304 (1992).

    CAS  PubMed  Google Scholar 

  12. Holgate, S.T. & Polosa, R. Treatment strategies for allergy and asthma. Nat. Rev. Immunol. 8, 218–230 (2008).

    CAS  PubMed  Google Scholar 

  13. Cohn, L., Homer, R.J., Marinov, A., Rankin, J. & Bottomly, K. Induction of airway mucus production by T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J. Exp. Med. 186, 1737–1747 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohn, L., Homer, R.J., Niu, N. & Bottomly, K. T helper 1 cells and interferon γ regulate allergic airway inflammation and mucus production. J. Exp. Med. 190, 1309–1318 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Walter, D.M. et al. Il-18 gene transfer by adenovirus prevents the development of and reverses established allergen-induced airway hyperreactivity. J. Immunol. 166, 6392–6398 (2001).

    CAS  PubMed  Google Scholar 

  16. Maecker, H.T. et al. Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model. J. Immunol. 166, 959–965 (2001).

    CAS  PubMed  Google Scholar 

  17. Sugimoto, T. et al. Interleukin 18 acts on memory T helper cells type 1 to induce airway inflammation and hyperresponsiveness in a naive host mouse. J. Exp. Med. 199, 535–545 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayashi, N. et al. T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-g and IL-13 production. Proc. Natl. Acad. Sci. USA 104, 14765–14770 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lambrecht, B.N. & Hammad, H. Biology of lung dendritic cells at the origin of asthma. Immunity 31, 412–424 (2009).

    CAS  PubMed  Google Scholar 

  20. van Rijt, L.S. et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201, 981–991 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lambrecht, B.N., Salomon, B., Klatzmann, D. & Pauwels, R.A. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J. Immunol. 160, 4090–4097 (1998).

    CAS  PubMed  Google Scholar 

  22. Lambrecht, B.N. et al. Myeloid dendritic cells induce TH2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551–559 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10, 713–720 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Perrigoue, J.G. et al. MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nat. Immunol. 10, 697–705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat. Immunol. 10, 706–712 (2009).

    CAS  PubMed  Google Scholar 

  26. Kim, S. et al. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced TH2 immunity can develop without basophil lymph node recruitment or IL-3. J. Immunol. 184, 1143–1147 (2010).

    CAS  PubMed  Google Scholar 

  27. Akuthota, P., Wang, H.B., Spencer, L.A. & Weller, P.F. Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin. Exp. Allergy 38, 1254–1263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, J.J. et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305, 1773–1776 (2004).

    CAS  PubMed  Google Scholar 

  29. Haldar, P. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360, 973–984 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lucey, D.R., Nicholson-Weller, A. & Weller, P.F. Mature human eosinophils have the capacity to express HLA-DR. Proc. Natl. Acad. Sci. USA 86, 1348–1351 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. MacKenzie, J.R., Mattes, J., Dent, L.A. & Foster, P.S. Eosinophils promote allergic disease of the lung by regulating CD4+ TH2 lymphocyte function. J. Immunol. 167, 3146–3155 (2001).

    CAS  PubMed  Google Scholar 

  32. Rothenberg, M.E. & Hogan, S.P. The eosinophil. Annu. Rev. Immunol. 24, 147–174 (2006).

    CAS  PubMed  Google Scholar 

  33. Prussin, C. & Metcalfe, D.D. 5. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 117, S450–S456 (2006).

    CAS  PubMed  Google Scholar 

  34. Silver, M.R. et al. IL-33 synergizes with IgE-dependent and IgE-independent agents to promote mast cell and basophil activation. Inflamm. Res. 59, 207–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Barrett, N.A. & Austen, K.F. Innate cells and T helper 2 cell immunity in airway inflammation. Immunity 31, 425–437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams, C.M. & Galli, S.J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192, 455–462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Taube, C. et al. Mast cells, FcɛRI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J. Immunol. 172, 6398–6406 (2004).

    CAS  PubMed  Google Scholar 

  38. Frandji, P. et al. Antigen-dependent stimulation by bone marrow-derived mast cells of MHC class II-restricted T cell hybridoma. J. Immunol. 151, 6318–6328 (1993).

    CAS  PubMed  Google Scholar 

  39. Wenzel, S. & Holgate, S.T. The mouse trap: It still yields few answers in asthma. Am. J. Respir. Crit. Care Med. 174, 1173–1176 (2006).

    PubMed  Google Scholar 

  40. Humbles, A.A. et al. A critical role for eosinophils in allergic airways remodeling. Science 305, 1776–1779 (2004).

    CAS  PubMed  Google Scholar 

  41. Corry, D.B. et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med. 183, 109–117 (1996).

    CAS  PubMed  Google Scholar 

  42. Foster, P.S., Hogan, S.P., Ramsay, A.J., Matthaei, K.I. & Young, I.G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183, 195–201 (1996).

    CAS  PubMed  Google Scholar 

  43. Leckie, M.J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    CAS  PubMed  Google Scholar 

  44. Johnson, J.R. et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am. J. Respir. Crit. Care Med. 169, 378–385 (2004).

    PubMed  Google Scholar 

  45. Anderson, G.P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372, 1107–1119 (2008).

    PubMed  Google Scholar 

  46. Kim, E.Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633–640 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Subrata, L.S. et al. Interactions between innate antiviral and atopic immunoinflammatory pathways precipitate and sustain asthma exacerbations in children. J. Immunol. 183, 2793–2800 (2009).

    CAS  PubMed  Google Scholar 

  48. Hadeiba, H., Corry, D.B. & Locksley, R.M. Baseline airway hyperreactivity in A/J mice is not mediated by cells of the adaptive immune system. J. Immunol. 164, 4933–4940 (2000).

    CAS  PubMed  Google Scholar 

  49. Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002).

    CAS  PubMed  Google Scholar 

  50. Haitchi, H.M. et al. Induction of a disintegrin and metalloprotease 33 during embryonic lung development and the influence of IL-13 or maternal allergy. J. Allergy Clin. Immunol. 124, 590–597 (2009).

    CAS  PubMed  Google Scholar 

  51. McIntire, J.J. et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat. Immunol. 2, 1109–1116 (2001).

    CAS  PubMed  Google Scholar 

  52. Allakhverdi, Z. et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 204, 253–258 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ying, S. et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of TH2-attracting chemokines and disease severity. J. Immunol. 174, 8183–8190 (2005).

    CAS  PubMed  Google Scholar 

  54. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nagata, Y., Kamijuku, H., Taniguchi, M., Ziegler, S. & Seino, K. Differential role of thymic stromal lymphopoietin in the induction of airway hyperreactivity and Th2 immune response in antigen-induced asthma with respect to natural killer T cell function. Int. Arch. Allergy Immunol. 144, 305–314 (2007).

    CAS  PubMed  Google Scholar 

  56. Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6, 1047–1053 (2005).

    CAS  PubMed  Google Scholar 

  57. Seshasayee, D. et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J. Clin. Invest. 117, 3868–3878 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hurst, S.D. et al. New IL-17 family members promote TH1 or TH2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169, 443–453 (2002).

    CAS  PubMed  Google Scholar 

  60. Dolgachev, V., Petersen, B.C., Budelsky, A.L., Berlin, A.A. & Lukacs, N.W. Pulmonary IL-17E (IL-25) production and IL-17RB+ myeloid cell-derived TH2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease. J. Immunol. 183, 5705–5715 (2009).

    CAS  PubMed  Google Scholar 

  61. Letuve, S. et al. IL-17E upregulates the expression of proinflammatory cytokines in lung fibroblasts. J. Allergy Clin. Immunol. 117, 590–596 (2006).

    CAS  PubMed  Google Scholar 

  62. Tamachi, T. et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J. Allergy Clin. Immunol. 118, 606–614 (2006).

    CAS  PubMed  Google Scholar 

  63. Ballantyne, S.J. et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120, 1324–1331 (2007).

    CAS  PubMed  Google Scholar 

  64. Terashima, A. et al. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J. Exp. Med. 205, 2727–2733 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stock, P., Lombardi, V., Kohlrautz, V. & Akbari, O. Induction of airway hyperreactivity by IL-25 is dependent on a subset of invariant NKT cells expressing IL-17RB. J. Immunol. 182, 5116–5122 (2009).

    CAS  PubMed  Google Scholar 

  66. Fallon, P.G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liew, F.Y., Pitman, N.I. & McInnes, I.B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10, 103–110 (2010).

    CAS  PubMed  Google Scholar 

  68. Cherry, W.B., Yoon, J., Bartemes, K.R., Iijima, K. & Kita, H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol. 121, 1484–1490 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kearley, J., Buckland, K.F., Mathie, S.A. & Lloyd, C.M. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am. J. Respir. Crit. Care Med. 179, 772–781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 183, 6469–6477 (2009).

    CAS  PubMed  Google Scholar 

  71. Coyle, A.J. et al. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J. Exp. Med. 190, 895–902 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, X. et al. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem. Biophys. Res. Commun. 386, 181–185 (2009).

    CAS  PubMed  Google Scholar 

  73. Kondo, Y. et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 20, 791–800 (2008).

    CAS  PubMed  Google Scholar 

  74. Hoshino, K. et al. The absence of interleukin 1 receptor-related T1/ST2 does not affect T helper cell type 2 development and its effector function. J. Exp. Med. 190, 1541–1548 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  76. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  77. Lockhart, E., Green, A.M. & Flynn, J.L. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 177, 4662–4669 (2006).

    CAS  PubMed  Google Scholar 

  78. Michel, M.L. et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, L. et al. IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120, 331–342 (2010).

    CAS  PubMed  Google Scholar 

  80. Song, C. et al. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J. Immunol. 181, 6117–6124 (2008).

    CAS  PubMed  Google Scholar 

  81. Barczyk, A., Pierzchala, W. & Sozanska, E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir. Med. 97, 726–733 (2003).

    CAS  PubMed  Google Scholar 

  82. Wilson, R.H. et al. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 180, 720–730 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    CAS  PubMed  Google Scholar 

  84. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  85. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature (2010).

  86. Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and TH2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    CAS  PubMed  Google Scholar 

  88. Bedoret, D. et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 119, 3723–3738 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Holt, P.G. et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med. 177, 397–407 (1993).

    CAS  PubMed  Google Scholar 

  90. Nair, M.G. et al. Alternatively activated macrophage-derived RELM-α is a negative regulator of type 2 inflammation in the lung. J. Exp. Med. 206, 937–952 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pesce, J.T. et al. Arginase-1-expressing macrophages suppress TH2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5, e1000371 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    CAS  PubMed  Google Scholar 

  93. Yang, M., Kumar, R.K. & Foster, P.S. Interferon-γ and pulmonary macrophages contribute to the mechanisms underlying prolonged airway hyperresponsiveness. Clin. Exp. Allergy 40, 163–173 (2009).

    PubMed  Google Scholar 

  94. Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21, 483–513 (2003).

    CAS  PubMed  Google Scholar 

  95. Akbari, O. et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9, 582–588 (2003).

    CAS  PubMed  Google Scholar 

  96. Matangkasombut, P., Pichavant, M., Dekruyff, R.H. & Umetsu, D.T. Natural killer T cells and the regulation of asthma. Mucosal Immunol. 2, 383–392 (2009).

    CAS  PubMed  Google Scholar 

  97. Bourgeois, E. et al. The pro-TH2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-γ production. Eur. J. Immunol. 39, 1046–1055 (2009).

    CAS  PubMed  Google Scholar 

  98. Smithgall, M.D. et al. IL-33 amplifies both Th1- and TH2-type responses through its activity on human basophils, allergen-reactive TH2 cells, iNKT and NK cells. Int. Immunol. 20, 1019–1030 (2008).

    CAS  PubMed  Google Scholar 

  99. Matangkasombut, P. et al. Natural killer T cells in the lungs of patients with asthma. J. Allergy Clin. Immunol. 123, 1181–1185 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Reynolds, C. et al. Natural killer T cells in bronchial biopsies from human allergen challenge model of allergic asthma. J. Allergy Clin. Immunol. 124, 860–862 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale T Umetsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., DeKruyff, R. & Umetsu, D. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11, 577–584 (2010). https://doi.org/10.1038/ni.1892

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing