Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Foamy macrophages and the progression of the human tuberculosis granuloma

Abstract

The progression of tuberculosis from a latent, subclinical infection to active disease that culminates in the transmission of infectious bacilli is determined locally at the level of the granuloma. This progression takes place even in the face of a robust immune response that, although it contains infection, is unable to eliminate the bacterium. The factors or environmental conditions that influence this progression remain to be determined. Recent advances have indicated that pathogen-induced dysregulation of host lipid synthesis and sequestration serves a critical role in this transition. The foamy macrophage seems to be a key participant in both sustaining persistent bacteria and contributing to the tissue pathology that leads to cavitation and the release of infectious bacilli.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progression of the human tuberculosis granuloma.
Figure 2: In lesions from patients with tuberculosis, foamy macrophages are located mainly in the interface region surrounding central necrosis.
Figure 3: Vesicles containing Mtb-derived cell wall lipids are released from infected macrophages.
Figure 4: In foamy macrophages, tubercle bacilli–containing phagosomes have 'privileged' contact with cellular lipid bodies.
Figure 5: Model for caseum accumulation and granuloma progression.

Similar content being viewed by others

References

  1. Parrish, N.M., Dick, J.D. & Bishai, W.R. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6, 107–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Rohde, K., Yates, R.M., Purdy, G.E. & Russell, D.G. Mycobacterium tuberculosis and the environment within the phagosome. Immunol. Rev. 219, 37–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Gohn, A. Der primäre Lungenherd bei der Tuberkulose der Kinder (The Primary Lung Lesion in Infant TB) (Urbach and Scharzenburg, Berlin and Vienna, 1912).

    Google Scholar 

  5. Saunders, B.M. & Cooper, A.M. Restraining mycobacteria role of granulomas in mycobacterial infections. Immunol. Cell Biol. 78, 334–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Russell, D.G. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5, 39–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Davis, J.M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. North, R.J. & Jung, Y.J. Immunity to tuberculosis. Annu. Rev. Immunol. 22, 599–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Cardona, P.J. et al. Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium tuberculosis. Infect. Immun. 71, 5845–5854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cardona, P.J. et al. Evolution of granulomas in lungs of mice infected aerogenically with Mycobacterium tuberculosis. Scand. J. Immunol. 52, 156–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Algood, H.M., Lin, P.L. & Flynn, J.L. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin. Infect. Dis. 41 Suppl 3, S189–S193 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kindler, V., Sappino, A.P., Grau, G.E., Piguet, P.F. & Vassalli, P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56, 731–740 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Roach, D.R. et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 168, 4620–4627 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Saunders, B.M. & Britton, W.J. Life and death in the granuloma: immunopathology of tuberculosis. Immunol. Cell Biol. 85, 103–111 (2007).

    Article  PubMed  Google Scholar 

  15. Gil, O. et al. Intragranulomatous necrosis in lungs of mice infected by aerosol with Mycobacterium tuberculosis is related to bacterial load rather than to any one cytokine or T cell type. Microbes Infect. 8, 628–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Casadevall, A. & Pirofski, L.A. The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1, 17–24 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lipman, M. & Breen, R. Immune reconstitution inflammatory syndrome in HIV. Curr. Opin. Infect. Dis. 19, 20–25 (2006).

    Article  PubMed  Google Scholar 

  18. Gordon, S.B. & Mwandumba, H. in Clinical Tuberculosis (eds. Davis, P.D., Barnes, P.F. & Gordon, S.B.) 145–162 (Hodder and Stoughton, London, 2008).

    Google Scholar 

  19. Milic-Emili, J. Ventilation Distribution. Physiologic Basis of Respiratory Disease (eds. Hamid, Q., Shannon, J. & Martin, J.) 133–141 (BC Decker, Hamilton, Ontario, Canada, 2005).

    Google Scholar 

  20. Park, M.K., Myers, R.A. & Marzella, L. Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses. Clin. Infect. Dis. 14, 720–740 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Chackerian, A.A., Alt, J.M., Perera, T.V., Dascher, C.C. & Behar, S.M. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun. 70, 4501–4509 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolf, A.J. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205, 105–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flynn, J.L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Elvang, T. et al. CD4 and CD8 T cell responses to the M. tuberculosis Ag85B–TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination. PLoS ONE 4, e5139 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lazarevic, V. & Flynn, J. CD8+ T cells in tuberculosis. Am. J. Respir. Crit. Care Med. 166, 1116–1121 (2002).

    Article  PubMed  Google Scholar 

  26. Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24, 105–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Rees, R.J. & Hart, P.D. Analysis of the host-parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts. Br. J. Exp. Pathol. 42, 83–88 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Munoz-Elias, E.J. et al. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect. Immun. 73, 546–551 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andersen, P. Host responses and antigens involved in protective immunity to Mycobacterium tuberculosis. Scand. J. Immunol. 45, 115–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Alatas, F. et al. Vascular endothelial growth factor levels in active pulmonary tuberculosis. Chest 125, 2156–2159 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Saita, N., Fujiwara, N., Yano, I., Soejima, K. & Kobayashi, K. Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces corneal angiogenesis in rats. Infect. Immun. 68, 5991–5997 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caceres, N. et al. Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis 89, 175–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. D'Avila, H. et al. Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J. Immunol. 176, 3087–3097 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Ordway, D., Henao-Tamayo, M., Orme, I.M. & Gonzalez-Juarrero, M. Foamy macrophages within lung granulomas of mice infected with Mycobacterium tuberculosis express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family. J. Immunol. 175, 3873–3881 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Peyron, P. et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4, e1000204 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ulrichs, T. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J. Pathol. 204, 217–228 (2004).

    Article  PubMed  Google Scholar 

  37. Ulrichs, T. et al. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J. Infect. Dis. 192, 89–97 (2005).

    Article  PubMed  Google Scholar 

  38. Kaplan, G. et al. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun. 71, 7099–7108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hunter, R.L., Jagannath, C. & Actor, J.K. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis (Edinb.) 87, 267–278 (2007).

    Article  Google Scholar 

  40. Dhillon, J., Dickinson, J.M., Sole, K. & Mitchison, D.A. Preventive chemotherapy of tuberculosis in Cornell model mice with combinations of rifampin, isoniazid, and pyrazinamide. Antimicrob. Agents Chemother. 40, 552–555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 27, 165–197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kalayoglu, M.V. & Byrne, G.I. Induction of macrophage foam cell formation by Chlamydia pneumoniae. J. Infect. Dis. 177, 725–729 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Portugal, L.R. et al. Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection. Microbes Infect. 10, 276–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. D'Avila, H., Maya-Monteiro, C.M. & Bozza, P.T. Lipid bodies in innate immune response to bacterial and parasite infections. Int. Immunopharmacol. 8, 1308–1315 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Silva, A.R. et al. Lipid bodies in oxidized LDL-induced foam cells are leukotriene-synthesizing organelles: a MCP-1/CCL2 regulated phenomenon. Biochim Biophys Acta (2009).

  46. Baldan, A., Gomes, A.V., Ping, P. & Edwards, P.A. Loss of ABCG1 results in chronic pulmonary inflammation. J. Immunol. 180, 3560–3568 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Beatty, W.L. et al. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1, 235–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Beatty, W.L., Ullrich, H.J. & Russell, D.G. Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event. Eur. J. Cell Biol. 80, 31–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Rhoades, E.R., Geisel, R.E., Butcher, B.A., McDonough, S. & Russell, D.G. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis 85, 159–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Geisel, R.E., Sakamoto, K., Russell, D.G. & Rhoades, E.R. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J. Immunol. 174, 5007–5015 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Puissegur, M.P. et al. Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and beta1 integrin-mediated pathway. J. Immunol. 178, 3161–3169 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Bowdish, D.M. et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog. 5, e1000474 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol. 48, 875–888 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Cocchiaro, J.L., Kumar, Y., Fischer, E.R., Hackstadt, T. & Valdivia, R.H. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc. Natl. Acad. Sci. USA 105, 9379–9384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Neyrolles, O. et al. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS ONE 1, e43 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Pandey, A.K. & Sassetti, C.M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA 105, 4376–4380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, X., Nesbitt, N.M., Dubnau, E., Smith, I. & Sampson, N.S. Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48, 3819–3821 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Munoz-Elias, E.J., Upton, A.M., Cherian, J. & McKinney, J.D. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol. Microbiol. 60, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Gan, H. et al. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat. Immunol. 9, 1189–1197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Velmurugan, K. et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 3, e110 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Keane, J. et al. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect. Immun. 65, 298–304 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J., Hartman, M. & Kornfeld, H. Macrophage apoptosis in tuberculosis. Yonsei Med. J. 50, 1–11 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Divangahi, M. et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol. 10, 899–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. de Chastellier and J.-F. Emile for the electron microscopy and histology in Figures 1 and 3. Supported by the European Union Framework Programme (Consortiums StopLATENT-TB Health-2007-200999 to P.-J.C.), the Bill and Melinda Gates Foundation Grand Challenges in Global Health (D.G.R., and GC12#82 to P.-J.C.), Institut National de la Santé et de la Recherche Médicale (Programme Interface to F.A.), Agence Nationale de la Recherche (ANR-06-MIME-A05115KS and ANR-06-MIME-037-01 to F.A.), the US Public Health Services (D.G.R.) and the US National Institutes of Health (HL055936 and AI064430 to D.G.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David G Russell or Frédéric Altare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, D., Cardona, PJ., Kim, MJ. et al. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10, 943–948 (2009). https://doi.org/10.1038/ni.1781

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing