Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rheb promotes cell growth as a component of the insulin/TOR signalling network

An Erratum to this article was published on 01 July 2003

Abstract

Insulin signalling is a potent inhibitor of cell growth and has been proposed to function, at least in part, through the conserved protein kinase TOR (target of rapamycin). Recent studies suggest a that the tuberous sclerosis complex Tsc1–Tsc2 may couple insulin signalling to Tor activity. However, the regulatory mechanism involved remains unclear, and additional components are most probably involved. In a screen for novel regulators of growth, we identified Rheb (Ras homologue enriched in brain), a member of the Ras superfamily of GTP-binding proteins. Increased levels of Rheb in Drosophila melanogaster promote cell growth and alter cell cycle kinetics in multiple tissues. In mitotic tissues, overexpression of Rheb accelerates passage through G1–S phase without affecting rates of cell division, whereas in endoreplicating tissues, Rheb increases DNA ploidy. Mutation of Rheb suspends larval growth and prevents progression from first to second instar. Genetic and biochemical tests indicate that Rheb functions in the insulin signalling pathway downstream of Tsc1–Tsc2 and upstream of TOR. Levels of rheb mRNA are rapidly induced in response to protein starvation, and overexpressed Rheb can drive cell growth in starved animals, suggesting a role for Rheb in the nutritional control of cell growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rheb regulates growth.
Figure 3: Genetic interactions between Rheb and the insulin/TOR pathway.
Figure 2: Rheb increases cell size and alters cell cycle phasing.
Figure 4: Rheb activates TOR/S6K signalling and growth under conditions of limiting nutrients.
Figure 5: Rheb and cell growth.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Toba, G. et al. The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics 151, 725–737 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Yamagata, K. et al. rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J. Biol. Chem. 269, 16333–16339 (1994).

    CAS  PubMed  Google Scholar 

  4. Gromov, P.S., Madsen, P., Tomerup, N. & Celis, J.E. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett. 377, 221–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Pignoni, F. & Zipursky, S.L. Induction of Drosophila eye development by decapentaplegic. Development 124, 271–278 (1997).

    CAS  PubMed  Google Scholar 

  6. Neufeld, T.P., de la Cruz, A.F., Johnston, L.A. & Edgar, B.A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Potter, C.J. & Xu, T. Mechanisms of size control. Curr. Opin. Genet. Dev. 11, 279–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Britton, J.S., Lockwood, W.K., Li, L., Cohen, S.M. & Edgar, B.A. Drosophila's Insulin/PI3-Kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Potter, C.J., Pedraza, L.G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biol. 4, 658–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. & Cantley, L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Potter, C.J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105, 357–368 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Gao, X. & Pan, D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 15, 1383–1392 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, X. et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nature Cell Biol. 4, 699–704 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, H., Stallock, J.P., Ng, J.C., Reinhard, C. & Neufeld, T.P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712–2724 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Oldham, S., Montagne, J., Radimerski, T., Thomas, G. & Hafen, E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of mammalian TOR. Genes Dev. 14, 2689–2694 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Radimerski, T. et al. dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nature Cell Biol. 4, 251–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Panepinto, J.C., Oliver, B.G., Amlung, T.W., Askew, D.S. & Rhodes, J.C. Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation. Fungal Genet. Biol. 36, 207–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Prober, D.A. & Edgar, B.A. Interactions between Ras1, dMyc, and PI3K in the developing Drosophila wing. Genes Dev. 16, 2286–2299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dickson, B., Sprenger, F., Morrison, D. & Hafen, E. Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360, 600–603 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Yee, W.M. & Worley, P.F. Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol. Cell Biol. 17, 921–933 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clark, G.J. et al. The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J. Biol. Chem. 272, 10608–10615 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Maheshwar, M.M. et al. The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum. Mol. Genet. 6, 1991–1996 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Urano, J., Tabancay, A.P., Yang, W. & Tamanoi, F. The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J. Biol. Chem. 275, 11198–11206 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Mach, K.E., Furge, K.A. & Albright, C.F. Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 155, 611–622 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Robertson, H.M. et al. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461–470 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brand, A.H. & Perrimon, N. Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Dev. 8, 629–639 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Gao, X., Neufeld, T.P. & Pan, D. Drosophila PTEN regulates cell growth and proliferation through PI3K- dependent and -independent pathways. Dev. Biol. 221, 404–418 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Grewal for critical reading of the manuscript. This work was supported by grants from the National Institutes of Health (GM20590 to L.J.S, GM62323 to D.J.P., and GM51186 and GM61805 to B.A.E.) and the American Cancer Society (RSG0303601DDC to D.J.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Edgar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Fig S1. Histogram of clone size distribution.

Fig S2. Transcriptional regulation of components of the insulin/PI3K signaling (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saucedo, L., Gao, X., Chiarelli, D. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5, 566–571 (2003). https://doi.org/10.1038/ncb996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing