Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nicotine activates and desensitizes midbrain dopamine neurons

Abstract

Tobacco use in developed countries is estimated to be the single largest cause of premature death1. Nicotine is the primary component of tobacco that drives use, and like other addictive drugs, nicotine reinforces self-administration and place preference in animal studies2,3,4,5. Midbrain dopamine neurons normally help toshape behaviour by reinforcing biologically rewarding events, but addictive drugs such as cocaine can inappropriately exert a reinforcing influence by acting upon the mesolimbic dopamine system3,4,5,6. Here we show that the same concentration of nicotine achieved by smokers activates and desensitizes multiple nicotinic receptors thereby regulating the activity of mesolimbic dopamine neurons. Initial application of nicotine can increase the activity of the dopamine neurons, which could mediate the rewarding aspects of tobacco use. Prolonged exposure to even these low concentrations of nicotine, however, can cause desensitization of the nicotinic receptors, which helps to explain acute tolerance to nicotine's effects. The effects suggest a cellular basis for reports that the first cigarette of the day is the most pleasurable, whereas the effect of subsequent cigarettes may depend on the interplay between activation and desensitization of multiple nicotinic receptors5.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dopaminergic neurons respond to nicotine.
Figure 2: Bath-applied nicotine affects ACh-activated responses.
Figure 3: Longer bath applications of 0.5 µM nicotine have multiple effects.
Figure 4: Pharmacology of the nicotinic currents from dopaminergic VTA neurons.

Similar content being viewed by others

References

  1. Peto,, Lopez, A. D., Boreham, J., Thun, M. & Heath, C. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet 399, 1268–1278 (1992).

    Article  Google Scholar 

  2. Corrigall, W. A. & Coen, K. M. Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99, 473–478 (1989).

    Article  CAS  Google Scholar 

  3. Clarke, P. B. S. in Effects of nicotine on biological systems(eds Adlkofer, F. & Thurau, K.) 285–294 (Birkhäuser, Basel, (1991)).

    Book  Google Scholar 

  4. Stolerman, I. P. & Shoaib, M. The neurobiology of tobacco addiction. Trends Pharmacol. Sci. 12, 467–473 (1991).

    Article  CAS  Google Scholar 

  5. Dani, J. A. & Heinemann, S. Molecular and cellular aspects of nicotine abuse. Neuron 16, 905–908 (1996).

    Article  CAS  Google Scholar 

  6. Nestler, E. J. Molecular mechanisms of drug addiction. J. Neurosci. 12, 2439–2450 (1992).

    Article  CAS  Google Scholar 

  7. Pontieri, F. E., Tanda, G., Orzi, F. & Di Chiara, G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382, 255–257 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Corrigall, W. A. & Coen, K. M. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology 104, 171–176 (1991).

    Article  CAS  Google Scholar 

  9. Corrigall, W. A., Coen, K. M. & Adamson, K. L. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 653, 278–284 (1994).

    Article  CAS  Google Scholar 

  10. Wada, E. et al . Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J. Comp. Neurol. 284, 314–335 (1989).

    Article  CAS  Google Scholar 

  11. Marks, M. J. et al . Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci. 12, 2765–2784 (1992).

    Article  CAS  Google Scholar 

  12. Clarke, P. B. S. Nicotinic receptors in mammalian brain: localization and relation to cholinergic innervation. Prog. Brain Res. 98, 77–83 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Calabresi, P., Lacey, M. G. & North, R. A. Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br. J. Pharmacol. 98, 135–140 (1989).

    Article  CAS  Google Scholar 

  14. Henningfield, J. E., Stapleton, J. M., Benowitz, N. L., Grayson, R. F. & London, E. D. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Dependence 33, 23–29 (1993).

    Article  CAS  Google Scholar 

  15. Mercuri, N. B., Bonci, A., Calabresi, P., Stefani, A. & Bernardi, G. Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur. J. Neurosci. 7, 462–496 (1995).

    Article  CAS  Google Scholar 

  16. Benowitz, N. L., Porchet, H. & Jacob, P. Nicotine dependence and tolerance in man: pharmacokinetic and pharmacodynamic investigations. Proc. Brain Res. 79, 279–287 (1989).

    Article  CAS  Google Scholar 

  17. Changeux, J.-P., Devillers-Thiery, A. & Chemouilli, P. Acetylcholine receptor: an allosteric protein. Science 225, 1335–1345 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Wonnacott, S. The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol. Sci. 11, 216–218 (1990).

    Article  CAS  Google Scholar 

  19. Lester, R. A. J. & Dani, J. A. Time-dependent changes in central nicotinic acetylcholine channel kinetics in excised patches. Neuropharmacology 33, 27–34 (1994).

    Article  CAS  Google Scholar 

  20. Sargent, P. The diversity of neuronal nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 16, 403–443 (1993).

    Article  CAS  Google Scholar 

  21. McGehee, D. S. & Role, L. W. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 57, 521–546 (1995).

    Article  CAS  Google Scholar 

  22. Role, L. W. & Berg, D. K. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16, 1077–1085 (1996).

    Article  CAS  Google Scholar 

  23. Alkondon, M. & Albuquerque, E. X. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J. Pharmacol. Exp. Ther. 265, 1455–1473 (1993).

    CAS  PubMed  Google Scholar 

  24. Séguéla, P., Wadiche, J., Dineley-Miller, K., Dani, J. A. & Patrick, J. W. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 13, 596–604 (1993).

    Article  Google Scholar 

  25. Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M. & Dani, J. A. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383, 713–716 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Kalivas, P. W. & Stewart, J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223–244 (1991).

    Article  CAS  Google Scholar 

  27. Bonci, A. & Williams, J. T. Acommon mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16, 631–639 (1996).

    Article  CAS  Google Scholar 

  28. Pich, E. M. et al . Common neural substrates for the addictive properties of nicotine and cocaine. Science 275, 83–86 (1997).

    Article  CAS  Google Scholar 

  29. Kang, Y. & Kitai, S. T. Awhole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neurosci. Res. 18, 209–221 (1993).

    Article  CAS  Google Scholar 

  30. Briggs, C. A. & McKenna, D. G. Effect of MK-801 at the human alpha 7 nicotinic acetylcholine receptor. Neuropharmacology 35, 407–414 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chi-feng Tseng for assistance in preparing the figures. This work was supported by the Smokeless Tobacco Research Council Inc., by the US National Institute of Neurological Disorders and Stroke and by the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Dani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pidoplichko, V., DeBiasi, M., Williams, J. et al. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390, 401–404 (1997). https://doi.org/10.1038/37120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing