Skip to main content

Advertisement

Log in

A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The reversing of epigenetic aberrations using the inhibitors of DNA methylation and histone deacetylases may have therapeutic value in cervical cancer. This is a randomized phase III, placebo-controlled study of hydralazine and valproate (HV) added to cisplatin topotecan in advanced cervical cancer. Patients received hydralazine at 182 mg for rapid, or 83 mg for slow acetylators, and valproate at 30 mg/kg, beginning a week before chemotherapy and continued until disease progression. Response, toxicity, and PFS were evaluated, and 36 patients (17 CT + HV and 19 CT + PLA) were included. The median number of cycles was 6. There were four PRs to CT + HV and one in CT + PLA. Stable disease in five (29%) and six (32%) patients, respectively, whereas eight (47%) and 12 (63%) showed progression (P = 0.27). At a median follow-up time of 7 months (1–22), the median PFS is 6 months for CT + PLA and 10 months for CT + HV (P = 0.0384, two tailed). Although preliminary, this study represents the first randomized clinical trial to demonstrate a significant advantage in progression-free survival for epigenetic therapy over one of the current standard combination chemotherapy in cervical cancer. Molecular correlates with response and survival from this trial are pending to analyze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Dueñas-González A, et al. Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer. 2005;4:38.

    Article  PubMed  Google Scholar 

  2. Monk BJ, et al. Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: a Gynecologic Oncology Group study. J Clin Oncol. 2009;27:4649–55.

    Article  PubMed  CAS  Google Scholar 

  3. Dueñas-González A, Cetina L, Coronel J, Martínez-Baños D. Pharmacotherapy options for locally advanced and advanced cervical cancer. Drugs. 2010;70:403–32.

    Article  PubMed  Google Scholar 

  4. Zhu WG, Otterson GA. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anti-Cancer Agents. 2003;3:187–9.

    Article  CAS  Google Scholar 

  5. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21:103–7.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu WG, et al. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res. 2001;61:1327–33.

    PubMed  CAS  Google Scholar 

  7. Hellebrekers DM, Griffioen AW, van Engeland M. Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta. 2007;1775:76–91.

    PubMed  CAS  Google Scholar 

  8. Segura-Pacheco B, et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res. 2003;9:1596–603.

    PubMed  CAS  Google Scholar 

  9. Song Y, Zhang C. Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression”. Cancer Chemother Pharmacol. 2009;63:605–13.

    Article  PubMed  CAS  Google Scholar 

  10. Law AY, Ip CK, Wong AS, Wagner GF, Wong CK. Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Exp Cell Res. 2008;314:1823–30.

    Article  PubMed  CAS  Google Scholar 

  11. Wang X, et al. Association between CpG island methylation of the WWOX gene and its expression in breast cancers. Tumor Biol. 2009;30:8–14.

    Article  Google Scholar 

  12. Chavez-Blanco A, et al. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. 2006;6:2.

    Article  PubMed  Google Scholar 

  13. Li H, et al. Synergy of DNA methylation and histone deacetylase inhibitors in the re-expression of RASSF1A and P16 genes silenced in QBC cells. Chinese-German J Clin Oncol. 2008;7:627–30.

    Article  CAS  Google Scholar 

  14. Li H, et al. Effects of hydralazine and valproate on the expression of E-cadherin gene and the invasiveness and the invasiveness of QBC939 cells. Frontiers Med China. 2009;3:153–7.

    Article  Google Scholar 

  15. Candelaria M, et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann Oncol. 2007;18:1529–38.

    Article  PubMed  CAS  Google Scholar 

  16. Arce C, et al. A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS ONE. 2006;1:e98.

    Article  PubMed  Google Scholar 

  17. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 2008;34:206–22.

    Article  PubMed  CAS  Google Scholar 

  18. Zambrano P, et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer. 2005;5:44.

    Article  PubMed  Google Scholar 

  19. Phiel CJ, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.

    Article  PubMed  CAS  Google Scholar 

  20. Kramer OH, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003;22:3411–20.

    Article  PubMed  Google Scholar 

  21. Chávez-Blanco A, et al. Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study. Mol Cancer. 2005;4:22.

    Article  PubMed  Google Scholar 

  22. Bug G, et al. Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer. 2005;104:2717–25.

    Article  PubMed  CAS  Google Scholar 

  23. García-Manero GB, et al. Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine with valproic acid in patients with leukemia. Blood. 2006;108:3271–9.

    Article  PubMed  Google Scholar 

  24. de la Mora-Garcia ML, et al. Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid. J Transl Med. 2006;4:55.

    Article  Google Scholar 

  25. de la Cruz-Hernandez E, et al. The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol J. 2007;4:18.

    Article  PubMed  Google Scholar 

  26. Candelaria M, et al. A pilot study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Eur J Gynecol Oncol (in press).

  27. Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  28. Mercurio C, Minucci S, Pelicci PG. Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol Res 2010 Feb 26. [Epub ahead of print].

  29. Arce C, et al. Hydralazine target: from blood vessels to the epigenome. J Transl Med. 2006;4:10.

    Article  PubMed  Google Scholar 

  30. Long HJ III, et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group Study. J Clin Oncol. 2005;23:4626–33.

    Article  PubMed  CAS  Google Scholar 

  31. Appleton K, et al. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol. 2007;25:4603–9.

    Article  PubMed  CAS  Google Scholar 

  32. Gollob JA, et al. Phase I trial of sequential low-dose 5-aza-2’-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin Cancer Res. 2006;12:4619–27.

    Article  PubMed  CAS  Google Scholar 

  33. Stewart DJ, et al. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res. 2009;15:3881–8.

    Article  PubMed  CAS  Google Scholar 

  34. Singh N, Dueñas-González A, Lyko F, Medina-Franco JL. Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. Chem Med Chem. 2009;4:792–9.

    PubMed  CAS  Google Scholar 

  35. Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene. 2008;27:404–8.

    Article  PubMed  CAS  Google Scholar 

  36. Gaudet FH, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300:489–92.

    Article  PubMed  CAS  Google Scholar 

  37. Kuck D, Singh N, Lyko F, Medina-Franco JL. Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem. 2010;18:822–9.

    Article  PubMed  CAS  Google Scholar 

  38. Daud AI, Dawson J, DeConti R, et al. Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacetylase inhibitor valproic acid in melanoma: translational and phase I/II clinical trial. Clin Cancer Res. 2009;15:2479–87.

    Article  PubMed  CAS  Google Scholar 

  39. Munster P, et al. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res. 2009;15:2488–96.

    Article  PubMed  CAS  Google Scholar 

  40. Voso MT, et al. Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res. 2009;15:5002–7.

    Article  PubMed  CAS  Google Scholar 

  41. Braiteh F, et al. Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res. 2008;14:6296–301.

    Article  PubMed  CAS  Google Scholar 

  42. Lin J, et al. A phase I dose-finding study of 5-azacytidine in combination with sodium phenylbutyrate in patients with refractory solid tumors. Clin Cancer Res. 2009;15:6241–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACyT grant AVANCE C01-294, and by Psicofarma, S.A. de C.V., Mexico. Sponsors did not participate in study design; collection, analysis, and interpretation of data; writing of the paper; nor decision to submit it for publication.

Conflict of interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Dueñas-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coronel, J., Cetina, L., Pacheco, I. et al. A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med Oncol 28 (Suppl 1), 540–546 (2011). https://doi.org/10.1007/s12032-010-9700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9700-3

Keywords

Navigation