Skip to main content

Advertisement

Log in

A Unifying Hypothesis for Scleroderma: Identifying a Target Cell for Scleroderma

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

We propose that a recent change in the conception of the role of type 1 interferon and the identification of adventitial stem cells suggests a unifying hypothesis for scleroderma. This hypothesis begins with vasospasm. Vasospasm is fully reversible unless, as proposed here, the resulting ischemia leads to apoptosis and activation of type 1 interferon. The interferon, we propose, initiates immune amplification, including characteristic scleroderma-specific antibodies. We propose that the interferon also acts on adventitial stem cells, producing myofibroblasts, rarefaction, and intimal hyperplasia—three morphologic changes that characterize this disease. Regulator of G-protein signaling 5 (RGS5), a regulator of vasoactive G-protein–coupled receptors, is a cell type–specific marker of pericytes and scleroderma myofibroblasts. RGS5 may provide a key link between initial hyperplasia and fibrosis in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nash RA, McSweeney PA, Crofford LJ, et al.: High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood 2007, 110:1388–1396.

    Article  CAS  PubMed  Google Scholar 

  2. Hansen-Smith F, Greene AS, Cowley AW Jr, Lombard JH: Structural changes during microvascular rarefaction in chronic hypertension. Hypertension 1990, 15:922–928.

    CAS  PubMed  Google Scholar 

  3. Vracko R: A comparison of the microvascular lesions in diabetes mellitus with those in normal aging. J Am Geriatr Soc 1982, 30:201–205.

    CAS  PubMed  Google Scholar 

  4. Lind L, Lithell H: Decreased peripheral blood flow in the pathogenesis of the metabolic syndrome comprising hypertension, hyperlipidemia, and hyperinsulinemia. Am Heart J 1993, 125:1494–1497.

    Article  CAS  PubMed  Google Scholar 

  5. Benjamin LE, Hemo I, Keshet E: A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998, 125:1591–1598.

    CAS  PubMed  Google Scholar 

  6. •• Fleming JN, Nash RA, McLeod DO, et al.: Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One 2008, 3:e1452. This article identified key markers of the SSc-associated vasculopathy in humans (VE-cadherin, IFN-α, and RGS5). Importantly, analysis of patients following bone marrow stem cell transplantation demonstrated that the capillary rarefaction was reversed and the expression of the vasculopathy markers all returned to normal.

    Article  PubMed  CAS  Google Scholar 

  7. Fleming JN, Nash RA, Mahoney WM Jr, Schwartz SM: Is scleroderma a vasculopathy? Curr Rheumatol Rep 2009, 11:103–110.

    Article  PubMed  Google Scholar 

  8. • Nakanishi Y, Henson PM, Shiratsuchi A: Pattern recognition in phagocytic clearance of altered self. Adv Exp Med Biol 2009, 653:129–138. This article demonstrated that an unexpected off-target effect of apoptotic debris is damage to the surrounding tissue, resulting in a feed-forward activation of the immune response.

    Article  CAS  PubMed  Google Scholar 

  9. Erwig LP, Henson PM: Immunological consequences of apoptotic cell phagocytosis. Am J Pathol 2007, 171:2–8.

    Article  CAS  PubMed  Google Scholar 

  10. Derrett-Smith EC, Dooley A, Khan K, et al.: Systemic vasculopathy with altered vasoreactivity in a transgenic mouse model of scleroderma. Arthritis Res Ther 2010, 12:R69.

    Article  PubMed  CAS  Google Scholar 

  11. Wilson MS, Wynn TA: Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol 2009, 2:103–121.

    Article  CAS  PubMed  Google Scholar 

  12. • Kim D, Peck A, Santer D, et al.: Induction of interferon-alpha by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-alpha activity with lung fibrosis. Arthritis Rheum 2008, 58:2163–2173. This article demonstrates the connection between high IFN-α expression levels and an increase in pulmonary fibrosis in SSc patients.

    Article  CAS  PubMed  Google Scholar 

  13. Stetson DB, Medzhitov R: Type I interferons in host defense. Immunity 2006, 25:373–381.

    Article  CAS  PubMed  Google Scholar 

  14. Moser KL, Kelly JA, Lessard CJ, Harley JB: Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun 2009, 10:373–379.

    Article  CAS  PubMed  Google Scholar 

  15. Gourh P, Agarwal SK, Divecha D, et al.: Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum 2009, 60:3794–3806.

    Article  CAS  PubMed  Google Scholar 

  16. Solans R, Bosch JA, Esteban I, Vilardell M: Systemic sclerosis developing in association with the use of interferon alpha therapy for chronic viral hepatitis. Clin Exp Rheumatol 2004, 22:625–628.

    CAS  PubMed  Google Scholar 

  17. Duan H, Fleming J, Pritchard DK, et al.: Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum 2008, 58:1465–1474.

    Article  CAS  PubMed  Google Scholar 

  18. Bauer JW, Petri M, Batliwalla FM, et al.: Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum 2009, 60:3098–3107.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Nash RA, Chu B, et al.: Improvements in digital vasculature observed using micro magnetic resonance angiography after high-dose immunosuppression for severe systemic sclerosis. Bone Marrow Transplant 2009, 44:387–389.

    Article  CAS  PubMed  Google Scholar 

  20. Hui DY: Intimal hyperplasia in murine models. Curr Drug Targets 2008, 9:251–260.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz SM, Murry CE: Proliferation and the monoclonal origins of atherosclerotic lesions. Annu Rev Med 1998, 49:437–460.

    Article  CAS  PubMed  Google Scholar 

  22. D’Angelo WA, Fries JF, Masi AT, Shulman LE: Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med 1969, 46:428–440.

    Article  PubMed  Google Scholar 

  23. Leroy EC: The vascular defect in scleroderma (systemic sclerosis). Acta Med Scand Suppl 1987, 715:165–167.

    CAS  PubMed  Google Scholar 

  24. Folkow B, Grimby G, Thulesius O: Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. Acta Physiol Scand 1958, 44:255–272.

    Article  CAS  PubMed  Google Scholar 

  25. Slomp J, van Munsteren JC, Poelmann RE, et al.: Formation of intimal cushions in the ductus arteriosus as a model for vascular intimal thickening. An immunohistochemical study of changes in extracellular matrix components. Atherosclerosis 1992, 93:25–39.

    Article  CAS  PubMed  Google Scholar 

  26. Shimokawa H, Takeshita A: Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2005, 25:1767–1775.

    Article  CAS  PubMed  Google Scholar 

  27. Fleming JN, Shulman HM, Nash RA, et al.: Cutaneous chronic graft-versus-host disease does not have the abnormal endothelial phenotype or vascular rarefaction characteristic of systemic sclerosis. PLoS One 2009, 4:e6203.

    Article  PubMed  CAS  Google Scholar 

  28. Siracusa LD, Christner P, McGrath R, et al.: The tight skin (Tsk) mutation in the mouse, a model for human fibrotic diseases, is tightly linked to the beta 2-microglobulin (B2m) gene on chromosome 2. Genomics 1993, 17:748–751.

    Article  CAS  PubMed  Google Scholar 

  29. Clark SH: Animal models in scleroderma. Curr Rheumatol Rep 2005, 7:150–155.

    Article  CAS  PubMed  Google Scholar 

  30. Claman HN, Jaffee BD, Huff JC, Clark RA: Chronic graft-versus-host disease as a model for scleroderma. II. Mast cell depletion with deposition of immunoglobulins in the skin and fibrosis. Cell Immunol 1985, 94:73–84.

    Article  CAS  PubMed  Google Scholar 

  31. Sgonc R, Gruschwitz MS, Dietrich H, et al.: Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 1996, 98:785–792.

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz SM: Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest 1997, 100:S87–S89.

    CAS  PubMed  Google Scholar 

  33. Wilcox JN, Cipolla GD, Martin FH, et al.: Contribution of adventitial myofibroblasts to vascular remodeling and lesion formation after experimental angioplasty in pig coronary arteries. Ann N Y Acad Sci 1997, 811:437–447.

    Article  CAS  PubMed  Google Scholar 

  34. Zalewski A, Shi Y, Johnson AG: Diverse origin of intimal cells: smooth muscle cells, myofibroblasts, fibroblasts, and beyond? Circ Res 2002, 91:652–655.

    Article  CAS  PubMed  Google Scholar 

  35. •• Passman JN, Dong XR, Wu SP, et al.: A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A 2008, 105: 9349–9354. This article identifies a novel stem cell niche in the vessel wall, the ASC, which is responsive to Hh-mediated signaling and expresses common progenitor genes, including Sca1 and Klf4.

    Article  CAS  PubMed  Google Scholar 

  36. •• Lavine KJ, Long F, Choi K, et al.: Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 2008, 135:3161–3171. This article is one of a series from this group that examines the role of Hh in the development and maintenance of the coronary vasculature. The authors have identified that cardiomyoblast-derived Hh supports the development of coronary veins, while adventitial/perivascular-derived Hh supports the development of coronary arteries.

    Article  CAS  PubMed  Google Scholar 

  37. •• Gaengel K, Genove G, Armulik A, Betsholtz C: Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009, 29:630–638. This article characterizes the function of pericytes in vessel stabilization and the role of pericytes in controlling EC/pericyte cross-talk.

    Article  CAS  PubMed  Google Scholar 

  38. Stein I, Neeman M, Shweiki D, et al.: Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 1995, 15:5363–5368.

    CAS  PubMed  Google Scholar 

  39. Lindahl P, Johansson BR, Leveen P, Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997, 277:242–245.

    Article  CAS  PubMed  Google Scholar 

  40. Grunewald M, Avraham I, Dor Y, et al.: VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006, 124:175–189.

    Article  CAS  PubMed  Google Scholar 

  41. • Diaz-Flores L, Gutierrez R, Madrid JF, et al.: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 2009, 24:909–969. This review extensively summarizes the morphologic and molecular expression pattern observed in pericytes.

    CAS  PubMed  Google Scholar 

  42. Sela S, Itin A, Natanson-Yaron S, et al.: A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ Res 2008, 102:1566–1574.

    Article  CAS  PubMed  Google Scholar 

  43. Adams LD, Geary RL, McManus B, Schwartz SM: A comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res 2000, 87:623–631.

    CAS  PubMed  Google Scholar 

  44. Bondjers C, Kalen M, Hellstrom M, et al.: Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 2003, 162:721–729.

    CAS  PubMed  Google Scholar 

  45. Mitchell TS, Bradley J, Robinson GS, et al.: RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis 2008, 11:141–151.

    Article  CAS  PubMed  Google Scholar 

  46. •• Hamzah J, Jugold M, Kiessling F, et al.: Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 2008, 453:410–414. This article demonstrates that RGS5-null tumors have “leaky” vasculature, implying that pericyte expression of RGS5 regulates vascular stability.

    Article  CAS  PubMed  Google Scholar 

  47. Hollinger S, Hepler JR: Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 2002, 54:527–559.

    Article  CAS  PubMed  Google Scholar 

  48. • Nisancioglu MH, Mahoney WM Jr, Kimmel DD, et al.: Generation and characterization of rgs5 mutant mice. Mol Cell Biol 2008, 28:2324–2331. This article demonstrates that RGS5 is expressed in pericytes supporting neovessels, and in the absence of RGS5 expression, mice are hypotensive.

    Article  CAS  PubMed  Google Scholar 

  49. Cho H, Park C, Hwang IY, et al.: Rgs5 targeting leads to chronic low blood pressure and a lean body habitus. Mol Cell Biol 2008, 28:2590–2597.

    Article  CAS  PubMed  Google Scholar 

  50. Trojanowska M: Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford) 2008, 47(Suppl 5):v2–v4.

    Article  CAS  Google Scholar 

  51. Akhmetshina A, Venalis P, Dees C, et al.: Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum 2009, 60:219–224.

    Article  CAS  PubMed  Google Scholar 

  52. Baroni SS, Santillo M, Bevilacqua F, et al.: Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 2006, 354:2667–2676.

    Article  CAS  PubMed  Google Scholar 

  53. Tellides G, Pober JS: Interferon-gamma axis in graft arteriosclerosis. Circ Res 2007, 100:622–632.

    Article  CAS  PubMed  Google Scholar 

  54. • Li Z, Wang ZG, Bian C, et al.: Interferon regulatory factor-1 exerts inhibitory effect on neointimal formation after vascular injury. Chin Med Sci J 2009, 24:91–96. This article demonstrates that IRF1-null mice have larger neointimas following femoral artery constriction, implying that IRF1 signals SMCs to undergo apoptosis.

    Article  PubMed  Google Scholar 

  55. Shen H, Zhang M, Minuk GY, Gong Y: Different effects of rat interferon alpha, beta and gamma on rat hepatic stellate cell proliferation and activation. BMC Cell Biol 2002, 3:9.

    Article  PubMed  Google Scholar 

  56. • Schirmer SH, Fledderus JO, Bot PT, et al.: Interferon-beta signaling is enhanced in patients with insufficient coronary collateral artery development and inhibits arteriogenesis in mice. Circ Res 2008, 102:1286–1294. This article identified type 1 IFN, specifically IFN-β, as a key determinant of collateral development (arteriogenesis). Patients with low IFN-β expression levels developed more collaterals than those in which IFN-β was induced. The authors correlated the in vivo observations with in vitro experiments demonstrating that IFN-β inhibits SMC proliferation.

    Article  CAS  PubMed  Google Scholar 

  57. Stout AJ, Gresser I, Thompson WD: Inhibition of wound healing in mice by local interferon alpha/beta injection. Int J Exp Pathol 1993, 74:79–85.

    CAS  PubMed  Google Scholar 

  58. • Eloranta ML, Franck-Larsson K, Lovgren T, et al.: Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann Rheum Dis 2010, 69:1396–1402. This article correlated type 1 IFN expression, specifically IFN-α, with SSc disease progression. The authors correlated increased IFN-α expression, produced by plasmacytoid dendritic cells, with the progressive pulmonary fibrosis and the digital ulcers/vascular rarefaction observed in SSc patients.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Drs. Mahoney, Fleming, and Schwartz have received grant support from the Scleroderma Research Foundation.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahoney, W.M., Fleming, J.N. & Schwartz, S.M. A Unifying Hypothesis for Scleroderma: Identifying a Target Cell for Scleroderma. Curr Rheumatol Rep 13, 28–36 (2011). https://doi.org/10.1007/s11926-010-0152-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-010-0152-8

Keywords

Navigation