Skip to main content

Advertisement

Log in

Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Pulmonary hypertension (PH) is associated with platelet activation, vascular inflammation and endothelial dysfunction leading to often life threatening thrombo-embolic complications. Microparticles (MPs) are cell vesicles with strong coagulatory and inflammatory effects being released during cell activation and apoptosis. As there are currently no established surrogate markers predicting platelet activation and pro-coagulation in PH patients, the aim of the study was to analyze different pro-coagulatory MP populations that might be related to thrombo-embolic complications in PH patients. Circulating MPs from platelet- (PMP, CD31+/61+), leukocyte- (LMP, CD11b+) and endothelial- (EMP, CD62E+) origin were measured by flow cytometry in 19 PH patients and were compared to 16 controls. PH patients had increased levels of PMP (PH vs. control 1,016 ± 201 vs. 527 ± 59 counts per min [cpm], P = 0.032), LMP (PH vs. control 31 ± 3 cpm vs. 18 ± 2 cpm, P = 0.001) and EMP (PH vs. control 99 ± 14 cpm vs. 46 ± 6 cpm, P = 0.001). Furthermore, PMP correlated to LMP (PMP vs. LMP: r = 0.75, P < 0.001) and LMP correlated to EMP levels (LMP vs. EMP, r = 0.74, P < 0.001) indicating a functional interaction between the different types of MP. In comparison to non-embolic PH patients, patients with a thrombo-embolic PH suffered from enhanced endothelial cell dysfunction as represented by significantly increased EMP levels (thrombo-embolic PH vs. non-embolic PH 137 ± 27 vs. 72 ± 10, P = 0.02). PH patients have increased levels of platelet-, leukocyte- and endothelial MP indicating an increased vascular pro-coagulation and inflammation which might be related to thrombo-embolic complications as well as PH progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim DK, Morrell NW (2009) Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation 119:566–576

    Article  CAS  PubMed  Google Scholar 

  2. Eddahibi S, Morrell N, d’Ortho MP, Naeije R, Adnot S (2002) Pathobiology of pulmonary arterial hypertension. Eur Respir J 20:1559–1572

    Article  CAS  PubMed  Google Scholar 

  3. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Stewart DJ (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    Article  CAS  PubMed  Google Scholar 

  4. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Simonneau G (2006) Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med 173:1023–1030

    Article  PubMed  Google Scholar 

  5. Thenappan T, Shah SJ, Rich S, Gomberg-Maitland M (2007) A USA-based registry for pulmonary arterial hypertension: 1982–2006. Eur Respir J 30:1103–1110

    Article  CAS  PubMed  Google Scholar 

  6. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115:343–349

    PubMed  Google Scholar 

  7. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20:22–27

    CAS  Google Scholar 

  8. Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 101:439–451

    CAS  PubMed  Google Scholar 

  9. Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, Freyssinet JM (2006) Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26:2594–2604

    Article  CAS  PubMed  Google Scholar 

  10. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580-583

  11. Diehl P, Nagy F, Sossong V, Helbing T, Beyersdorf F, Olschewski M, Bode C, Moser M (2008) Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemost 99:711–719

    CAS  PubMed  Google Scholar 

  12. Diehl P, Aleker M, Helbing T, Sossong V, Beyersdorf F, Olschewski M, Bode C, Moser M Enhanced microparticles in ventricular assist device patients predict platelet, leukocyte and endothelial cell activation. Interact Cardiovasc Thorac Surg. 11:133-137

  13. Keuren JF, Magdeleyns EJ, Govers-Riemslag JW, Lindhout T, Curvers J (2006) Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. Br J Haematol 134:307–313

    Article  CAS  PubMed  Google Scholar 

  14. Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, Ozeki Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H (2001) Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma 50:801–809

    Article  CAS  PubMed  Google Scholar 

  15. Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS (2004) New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 53:210–230

    Article  CAS  PubMed  Google Scholar 

  16. Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001) The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med 22:405–418

    Article  CAS  Google Scholar 

  17. Herve P, Humbert M, Sitbon O, Parent F, Nunes H, Legal C, Garcia G, Simonneau G (2001) Pathobiology of pulmonary hypertension. The role of platelets and thrombosis. Clin Chest Med 22:451–458

    Article  CAS  PubMed  Google Scholar 

  18. Eddahibi S, Humbert M, Sediame S, Chouaid C, Partovian C, Maitre B, Teiger E, Rideau D, Simonneau G, Sitbon O, Adnot S (2000) Imbalance between platelet vascular endothelial growth factor and platelet-derived growth factor in pulmonary hypertension. Effect of prostacyclin therapy. Am J Respir Crit Care Med 162:1493–1499

    CAS  PubMed  Google Scholar 

  19. Ulrich S, Huber LC, Fischler M, Treder U, Maggiorini M, Eberli FR, Speich R (2010) Platelet serotonin content and transpulmonary platelet serotonin gradient in patients with pulmonary hypertension. Respiration, doi:10.1159/000314271

  20. Damas JK, Otterdal K, Yndestad A, Aass H, Solum NO, Froland SS, Simonsen S, Aukrust P, Andreassen AK (2004) Soluble CD40 ligand in pulmonary arterial hypertension: possible pathogenic role of the interaction between platelets and endothelial cells. Circulation 110:999–1005

    Article  CAS  PubMed  Google Scholar 

  21. Sakamaki F, Kyotani S, Nagaya N, Sato N, Oya H, Satoh T, Nakanishi N (2000) Increased plasma P-selectin and decreased thrombomodulin in pulmonary arterial hypertension were improved by continuous prostacyclin therapy. Circulation 102:2720–2725

    CAS  PubMed  Google Scholar 

  22. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, Ataullakhanov FI (2007) Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 97:425–434

    CAS  PubMed  Google Scholar 

  23. Bal L, Ederhy S, Di Angelantonio E, Toti F, Zobairi F, Dufaitre G, Meuleman C, Mallat Z, Boccara F, Tedgui A, Freyssinet JM, Cohen A (in press) Circulating procoagulant microparticles in acute pulmonary embolism: a case–control study. Int J Cardiol. doi:10.1016/j.ijcard.2009.11.048

  24. Collen D, Hoylaerts MF (2005) Relationship between inflammation and venous thromboembolism as studied by microparticle assessment in plasma. J Am Coll Cardiol 45:1472–1473

    Article  PubMed  Google Scholar 

  25. Pfister SL (2004) Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension 43:428–433

    Article  CAS  PubMed  Google Scholar 

  26. Pakala R (2004) Serotonin and thromboxane A2 stimulate platelet-derived microparticle-induced smooth muscle cell proliferation. Cardiovasc Radiat Med 5:20–26

    Article  PubMed  Google Scholar 

  27. Katayama M, Handa M, Araki Y, Ambo H, Kawai Y, Watanabe K, Ikeda Y (1993) Soluble P-selectin is present in normal circulation and its plasma level is elevated in patients with thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome. Br J Haematol 84:702–710

    Article  CAS  PubMed  Google Scholar 

  28. Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S (2001) Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA 98:8798–8803

    Article  CAS  PubMed  Google Scholar 

  29. Hall SM, Brogan P, Haworth SG, Klein N (2010) Contribution of inflammation to the pathology of idiopathic pulmonary arterial hypertension in children. Thorax, doi:10.1136/thx.2008.106435

  30. Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, Rame EJ, Grossman W, De Marco T, Yeghiazarians Y (2008) Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177:1268–1275

    Article  CAS  PubMed  Google Scholar 

  31. Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19

    Article  CAS  PubMed  Google Scholar 

  32. Cody RJ, Haas GJ, Binkley PF, Capers Q, Kelley R (1992) Plasma endothelin correlates with the extent of pulmonary hypertension in patients with chronic congestive heart failure. Circulation 85:504–509

    CAS  PubMed  Google Scholar 

  33. Weerackody RP, Welsh DJ, Wadsworth RM, Peacock AJ (2009) Inhibition of p38 MAPK reverses hypoxia-induced pulmonary artery endothelial dysfunction. Am J Physiol Heart Circ Physiol 296:H1312–H1320

    Article  CAS  PubMed  Google Scholar 

  34. Ghorishi Z, Milstein JM, Poulain FR, Moon-Grady A, Tacy T, Bennett SH, Fineman JR, Eldridge MW (2007) Shear stress paradigm for perinatal fractal arterial network remodeling in lambs with pulmonary hypertension and increased pulmonary blood flow. Am J Physiol Heart Circ Physiol 292:H3006–H3018

    Article  CAS  PubMed  Google Scholar 

  35. Bakouboula B, Morel O, Faure A, Zobairi F, Jesel L, Trinh A, Zupan M, Canuet M, Grunebaum L, Brunette A, Desprez D, Chabot F, Weitzenblum E, Freyssinet JM, Chaouat A, Toti F (2008) Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 177:536–543

    Article  CAS  PubMed  Google Scholar 

  36. Bull TM, Golpon H, Hebbel RP, Solovey A, Cool CD, Tuder RM, Geraci MW, Voelkel NF (2003) Circulating endothelial cells in pulmonary hypertension. Thromb Haemost 90:698–703

    CAS  PubMed  Google Scholar 

  37. Klinkner DB, Densmore JC, Kaul S, Noll L, Lim HJ, Weihrauch D, Pritchard KA Jr, Oldham KT, Sander TL (2006) Endothelium-derived microparticles inhibit human cardiac valve endothelial cell function. Shock 25:575–580

    Article  CAS  PubMed  Google Scholar 

  38. Fuster V, Steele PM, Edwards WD, Gersh BJ, McGoon MD, Frye RL (1984) Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 70:580–587

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors has any conflicts of interests concerning this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Diehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diehl, P., Aleker, M., Helbing, T. et al. Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis 31, 173–179 (2011). https://doi.org/10.1007/s11239-010-0507-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-010-0507-z

Keywords

Navigation