Skip to main content

Advertisement

Log in

MicroRNA-21 in Scleroderma Fibrosis and its Function in TGF-β- Regulated Fibrosis-Related Genes Expression

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

An Erratum to this article was published on 18 June 2013

Abstract

Uncontrolled fibrosis in multiple organs is the main cause of death in systemic sclerosis (SSc), and transforming growth factor-β (TGF-β) activation plays a fundamental role in the process. Our previous study demonstrated that miR-21 was significantly up-regulated in SSc fibroblasts. Here, we found that TGF-β regulated the expression of miR-21 and fibrosis-related genes, and decreased Smad7 expression. Over-expression of miR-21 in fibroblasts decreased the levels of Smad7, whereas knockdown of miR-21 increased its expression. Further study using a reporter gene assay demonstrated Smad7 was a direct target of miR-21. Similar to human SSc, the expression of miR-21 increased in the bleomycin induced skin fibrosis. Inhibition of fibrosis by treatment with anti-fibrosis drug bortezomib restored the levels of miR-21 and Smad7. MiR-21 may function in an amplifying circuit to enhance TGF-β signaling events in SSc fibrosis, and suggesting that miR-21 may act as a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2012;8:42–54.

    Article  CAS  Google Scholar 

  2. Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009;5:200–6.

    Article  PubMed  CAS  Google Scholar 

  3. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117:557–67.

    Article  PubMed  CAS  Google Scholar 

  4. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.

    Article  PubMed  CAS  Google Scholar 

  5. Varga J. Scleroderma and Smads: dysfunctional Smad family dynamics culminating in fibrosis. Arthritis Rheum. 2002;46:1703–13.

    Article  PubMed  CAS  Google Scholar 

  6. Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez RJ, et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci U S A. 2002;99:3908–13.

    Article  PubMed  CAS  Google Scholar 

  7. Nakao A, Okumura K, Ogawa H. Smad7: a new key player in TGF-beta-associated disease. Trends Mol Med. 2002;8:361–3.

    Article  PubMed  CAS  Google Scholar 

  8. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9:219–30.

    Article  PubMed  CAS  Google Scholar 

  9. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  PubMed  CAS  Google Scholar 

  10. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027–32.

    Article  PubMed  Google Scholar 

  11. Jiang X, Tsitsiou E, Herrick SE, Lindsay MA. MicroRNAs and the regulation of fibrosis. FEBS J. 2010;277:2015–21.

    Article  PubMed  CAS  Google Scholar 

  12. Li H, Yang R, Fan X, Gu T, Zhao Z, Chang D, et al. MicroRNA array analysis of microRNAs related to systemic scleroderma. Rheumatol Int. 2012;32:307–13.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, et al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 2012;32:514–22.

    Google Scholar 

  14. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.

    Article  PubMed  CAS  Google Scholar 

  15. Akhmetshina A, Venalis P, Dees C, Busch N, Zwerina J, Schett G, et al. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum. 2009;60:219–24.

    Article  PubMed  CAS  Google Scholar 

  16. Distler JH, Jungel A, Huber LC, Schulze-Horsel U, Zwerina J, Gay RE, et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 2007;56:311–22.

    Article  PubMed  CAS  Google Scholar 

  17. Mutlu GM, Budinger GR, Wu M, Lam AP, Zirk A, Rivera S, et al. Proteasomal inhibition after injury prevents fibrosis by modulating TGF-beta(1) signalling. Thorax. 2012;67:139–46.

    Article  PubMed  Google Scholar 

  18. Schieveld JN. On pediatric delirium and the use of the pediatric confusion assessment method for the Intensive Care Unit. Crit Care Med. 2011;39:220–1.

    Article  PubMed  Google Scholar 

  19. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62:1733–43.

    Article  PubMed  CAS  Google Scholar 

  20. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589–97.

    Article  PubMed  CAS  Google Scholar 

  21. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.

    Article  PubMed  CAS  Google Scholar 

  22. Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301:F793–801.

    Article  PubMed  CAS  Google Scholar 

  23. Hsu E, Shi H, Jordan RM, Lyons-Weiler J, Pilewski JM, Feghali-Bostwick CA. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum. 2011;63:783–94.

    Article  PubMed  CAS  Google Scholar 

  24. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A. 2009;106:12085–90.

    Article  PubMed  CAS  Google Scholar 

  25. Inoue Y, King Jr TE, Barker E, Daniloff E, Newman LS. Basic fibroblast growth factor and its receptors in idiopathic pulmonary fibrosis and lymphangioleiomyomatosis. Am J Respir Crit Care Med. 2002;166:765–73.

    Article  PubMed  Google Scholar 

  26. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.

    PubMed  CAS  Google Scholar 

  27. Zhang S, Chen L, Jung EJ, Calin GA. Targeting microRNAs with small molecules: from dream to reality. Clin Pharmacol Ther. 2010;87:754–8.

    Article  PubMed  CAS  Google Scholar 

  28. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352:2487–98.

    Article  PubMed  CAS  Google Scholar 

  29. Anan A, Baskin-Bey ES, Bronk SF, Werneburg NW, Shah VH, Gores GJ. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology. 2006;43:335–44.

    Article  PubMed  CAS  Google Scholar 

  30. Meiners S, Hocher B, Weller A, Laule M, Stangl V, Guenther C, et al. Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome. Hypertension. 2004;44:471–7.

    Article  PubMed  CAS  Google Scholar 

  31. Tashiro K, Tamada S, Kuwabara N, Komiya T, Takekida K, Asai T, et al. Attenuation of renal fibrosis by proteasome inhibition in rat obstructive nephropathy: possible role of nuclear factor kappaB. Int J Mol Med. 2003;12:587–92.

    PubMed  CAS  Google Scholar 

  32. Fineschi S, Bongiovanni M, Donati Y, Djaafar S, Naso F, Goffin L, et al. In vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. Am J Respir Cell Mol Biol. 2008;39:458–65.

    Article  PubMed  CAS  Google Scholar 

  33. Ballabio E, Armesto M, Breeze CE, Manterola L, Arestin M, Tramonti D, et al. Bortezomib action in multiple myeloma: microRNA-mediated synergy (and miR-27a/CDK5 driven sensitivity)? Blood Cancer J. 2012;2:e83.

    Article  PubMed  CAS  Google Scholar 

  34. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  PubMed  CAS  Google Scholar 

  35. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  PubMed  CAS  Google Scholar 

  36. Kawashita Y, Jinnin M, Makino T, Kajihara I, Makino K, Honda N, et al. Circulating miR-29a levels in patients with scleroderma spectrum disorder. J Dermatol Sci. 2011;61:67–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (30671947, 30900588), Fundamental Research Funds for the Central Universities (2012QNZT106), and Graduate Research Innovation Fund of Hunan Province (No. CX2011B061)

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhui You or Xiaoxia Zuo.

Additional information

Honglin Zhu and Hui Luo contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Luo, H., Li, Y. et al. MicroRNA-21 in Scleroderma Fibrosis and its Function in TGF-β- Regulated Fibrosis-Related Genes Expression. J Clin Immunol 33, 1100–1109 (2013). https://doi.org/10.1007/s10875-013-9896-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-013-9896-z

Keywords

Navigation