Skip to main content
Log in

Dipyridamole, an Underestimated Vascular Protective Drug

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Dipyridamole, developed almost half a century ago, acts by inhibiting nucleoside transport, which increases adenosine levels leading to inhibition of platelet aggregation and vasodilatation mainly in the coronary tree. It is a vaso-protective drug with proven efficacy in the prevention of strokes. Adenosine receptor 2 inhibitory purines, ubiquitously available in food and drink, inhibit the vasomotor effects of dipyridamole but not its action on platelet aggregation. This and the slow build-up of blood levels of dipyridamole after oral application may explain why incidents of drug-induced angina (“coronary steal”) were never reported in the prevention trials. The prevention of arterial thrombosis and the positive remodeling of the arterial system (arteriogenesis) by elevated blood flows suggest that dipyridamole may be able to halt the progression of organ manifestations of atherosclerosis. Clinical trials for the secondary prevention of vascular occlusions in other vascular beds should be encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kadatz R. Die pharmakologischen Eigenschaften der neuen koronarerweiternden substanz 2,5-Bis (diethanolamino)-4,8-dipiperidino-pyrimide (5,4-d) pyrimidin. Arzneim Forsch 1959;9:39.

    CAS  Google Scholar 

  2. Diener HC, Cunha L, Forbes C, Sivenius J, Smets P, Löwenthal A. European Stroke Prevention Study 2. J Neurol Sci 1996;143:1–13.

    Article  PubMed  CAS  Google Scholar 

  3. Diener HC. Antiplatelet drugs in secondary prevention of stroke: lessons from recent trials. Neurology 1997;49:S75–S81.

    PubMed  CAS  Google Scholar 

  4. Fulton WF, Sumner DG. Proceedings: I-Labelled fibrinogen, autoradiography, and stereoarteriography in identification of coronary thrombotic occlusion in fatal myocardial infarction. Br Heart J 1976;38:880.

    PubMed  CAS  Google Scholar 

  5. Lawrence JR, Shepherd JT, Bone I, Rogen AS, Fulton WF. Proceedings: Controlled trial of fibrinolytic therapy in unstable angina. Br Heart J 1976;38:873.

    PubMed  CAS  Google Scholar 

  6. Rentrop P, Blanke H, Karsch KR, Kaiser H, Kostering H, Leitz K. Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation 1981;63:307–317.

    PubMed  CAS  Google Scholar 

  7. Juhran W, Voss EM, Dietmann K, Schaumann W. Pharmacological effects on coronary reactive hyperemia in conscious dogs. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 1971;269:32–47.

    CAS  Google Scholar 

  8. Curnish RR, Berne RM, Rubio R. Effect of aminophylline on myocardial reactive hyperemia. Proc Soc Exp Biol Med 1972;141:593–598.

    PubMed  CAS  Google Scholar 

  9. Klabunde RE. Dipyridamole inhibition of adenosine metabolism in human blood. Eur J Pharmacol 1983;93:21–26.

    Article  PubMed  CAS  Google Scholar 

  10. Van Belle H. Uptake and deamination of adenosine by blood. Species differences, effect of pH, ions, temperature and metabolic inhibitors. Biochim Biophys Acta. 1969;192:124–132.

    PubMed  Google Scholar 

  11. Schaper W, Jageneau A, Xhonneux R. The cardiovascular pharmacology of lidoflazine. Brux Med 1970;50:635–638.

    PubMed  CAS  Google Scholar 

  12. Van Belle H. The disappearance of adenosine in blood. Effect of lidoflazine and other drugs. Eur J Pharmacol 1970;11:241–248.

    PubMed  Google Scholar 

  13. Gamboa A, Ertl AC, Costa F, et al. Blockade of nucleoside transport is required for delivery of intraarterial adenosine into the interstitium: relevance to therapeutic preconditioning in humans. Circulation 2003;108:2631–2635.

    Article  PubMed  CAS  Google Scholar 

  14. Henrichs KJ, Matsuoka H, Schaper W. Mode of action of adenosine-potentiating vasodilators. In: Berne RM, FRall TW, Rubio R, eds. Regulatory Function of Adenosine. Boston: Nijhoff; 1983:517–523.

    Google Scholar 

  15. Schaumann W, Juhran W, Dietmann K. Antagonism of circulation effect of adenosine by theophylline. Arzneimittelforschung 1970;20:372–377.

    PubMed  CAS  Google Scholar 

  16. Leipert B, Becker BF, Gerlach E. Different endothelial mechanisms involved in coronary responses to known vasodilators. Am J Physiol 1992;262:H1676–H1683.

    PubMed  CAS  Google Scholar 

  17. Bijlstra P, van Ginneken EE, Huls M, van Dijk R, Smits P, Rongen GA. Glyburide inhibits dipyridamole-induced forearm vasodilation but not adenosine-induced forearm vasodilation. Clin Pharmacol Ther 2004;75:147–156.

    Article  PubMed  CAS  Google Scholar 

  18. Born GV, Cross MJ. The aggregation of blood platelets. J Physiol 1963;168:178–195.

    PubMed  CAS  Google Scholar 

  19. Harker LA, Kadatz RA. Mechanism of action of dipyridamole. Thromb Res Suppl 1983;4:39–46.

    PubMed  CAS  Google Scholar 

  20. Heptinstall S, Fox S, Crawford J, Hawkins M. Inhibition of platelet aggregation in whole blood by dipyridamole and aspirin. Thromb Res 1986;42:215–223.

    Article  PubMed  CAS  Google Scholar 

  21. FitzGerald GA. Dipyridamole. N Engl J Med 1987;316:1247–1257.

    PubMed  CAS  Google Scholar 

  22. Feijge MA, Ansink K, Vanschoonbeek K, Heemskerk JW. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3. Biochem Pharmacol 2004;67:1559–1567.

    Article  PubMed  CAS  Google Scholar 

  23. Varani K, Portaluppi F, Gessi S, et al. Dose and Time Effects of Caffeine Intake on Human Platelet Adenosine A2A Receptors. Circulation. 2000;285:102–107.

    Google Scholar 

  24. Duffy S, Vita JA, Holbrook M, Swerdloff PL, Keany JF. Effect of acute and chronic tea consumption on platelet aggregation on patients with coronary heart disease. ATVB 2001;21:1084–1090.

    CAS  Google Scholar 

  25. Sandoli D, Chiu PJ, Chintala M, Dionisotti S, Ongini E. In vivo and ex vivo effects of adenosine A1 and A2 receptor agonists on platelet aggregation in the rabbit. Eur J Pharmacol. 1994;259:43–49.

    Article  PubMed  CAS  Google Scholar 

  26. Saniabadi AR, Fisher TC, McLaren M, Belch JF, Forbes CD. Effect of dipyridamole alone and in combination with aspirin on whole blood platelet aggregation, PGI2 generation, and red cell deformability ex vivo in man. Cardiovasc Res 1991;25:177–183.

    PubMed  CAS  Google Scholar 

  27. Mehta J, Mehta P. Dipyridamole and aspirin in relation to platelet aggregation and vessel wall prostaglandin generation. J Cardiovasc Pharmacol 1982;4:688–693.

    PubMed  CAS  Google Scholar 

  28. Berne RM. Regulation of coronary blood flow. Physiol Rev. 1964;44:1–29.

    PubMed  CAS  Google Scholar 

  29. Gerlach E, Deuticke B, Dreisbach RH. Der Nukleotidabbau im Herzmuskel bei Sauerstoffmangel und seine moegliche Bedeutung fuer die Koronardurchblutung. Naturwissenschaften 1963;50:228–229.

    Article  CAS  Google Scholar 

  30. Deussen A. Quantitative integration of different sites of adenosine metabolism in the heart. Ann Biomed Eng 2000;28:877–883.

    Article  PubMed  CAS  Google Scholar 

  31. Tune JD, Richmond KN, Gorman MW, Feigl EO. Control of coronary blood flow during exercise. Exp Biol Med (Maywood) 2002;227:238–250.

    CAS  Google Scholar 

  32. Pasyk S, Flameng W, Wusten B, Schaper W. Influence of tachycardia on regional myocardial flow in chronic experimental coronary occlusion. Basic Res Cardiol 1976;71:243–251.

    Article  PubMed  CAS  Google Scholar 

  33. Feigl EO. Berne's adenosine hypothesis of coronary blood flow control. Am J Physiol Heart Circ Physiol 2004;287:H1891–H1894.

    Article  PubMed  CAS  Google Scholar 

  34. Jagger J, Bateman RM, Ellsworth ML, Ellis CG. Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 2001;280: H2833–H2839.

    PubMed  CAS  Google Scholar 

  35. Bergfeld GA, Forrester T. Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 1992;26:40–47.

    Article  PubMed  CAS  Google Scholar 

  36. Farias M, 3rd, Gorman MW, Savage MV, Feigl EO. Plasma ATP during exercise: possible role in regulation of coronary blood flow. Am J Physiol Heart Circ Physiol 2005;288:H1586–H1590.

    PubMed  CAS  Google Scholar 

  37. Burnstock G. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology. 1997;36:1127–1139.

    Article  PubMed  CAS  Google Scholar 

  38. Koszalka P, Ozuyaman B, Huo Y, et al. Targeted disruption of cd73(ecto-5'-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ Res 2004;95:814–821.

    Article  PubMed  CAS  Google Scholar 

  39. Gorman MW, Ogimoto K, Savage MV, Jacobson KA, Feigl EO. Nucleotide coronary vasodilation in guinea pig hearts. Am J Physiol Heart Circ Physiol 2003;285:H1040–H1047.

    PubMed  CAS  Google Scholar 

  40. Werner GS, Figulla HR. Direct assessment of coronary steal and associated changes of collateral hemodynamics in chronic total coronary occlusions. Circulation 2002;106:435–440.

    Article  PubMed  Google Scholar 

  41. Akinboboye OO, Idris O, Chou RL, Sciacca RR, Cannon PJ, Bergmann SR. Absolute quantitation of coronary steal induced by intravenous dipyridamole. J Am Coll Cardiol 2001;37:109–116.

    Article  PubMed  CAS  Google Scholar 

  42. Schaper W, Lewi P, Flameng W, Gijpen L. Myocardial steal produced by coronary vasocilation in chronic coronary artery occlusion. Basic Res Cardiol 1973;68:3–20.

    Article  PubMed  CAS  Google Scholar 

  43. Schaper W, Wusten B, Flameng W, Scholtholt J, Winkler B, Pasyk S. Local dilatory reserve in chronic experimental coronary occlusion without infarction. Quantitation of collateral development. Basic Res Cardiol 1975;70:159–173.

    Article  PubMed  CAS  Google Scholar 

  44. Flameng W, Wusten B, Winkler B, Pasyk S, Schaper W. Influence of perfusion pressure and heart rate on local myocardial flow in the collateralized heart with chronic coronary occlusion. Am Heart J 1975;89:51–59.

    Article  PubMed  CAS  Google Scholar 

  45. Thoma R. Untersuchungen über die Histogenese und Histomechanik des Gefäßsystems. Stuttgart: F.Enke; 1893.

  46. Schaper W, Schaper J. Arteriogenesis. Boston, Dordrecht, London: Kluwer Academic Pubishers; 2004.

    Google Scholar 

  47. Pipp F, Boehm S, Cai WJ, et al. Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler Thromb Vasc Biol 2004;24:1664–1668.

    PubMed  CAS  Google Scholar 

  48. Godecke A, Heinicke T, Kamkin A, et al. Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 2001;532:195–204.

    Article  PubMed  CAS  Google Scholar 

  49. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    PubMed  CAS  Google Scholar 

  50. Hoffmeister HM, Mauser M, Schaper W. Repeated short periods of regional myocardial ischemia: effect on local function and high energy phosphate levels. Basic Res Cardiol 1986;81:361–372.

    Article  PubMed  CAS  Google Scholar 

  51. Strohm C, Barancik T, Bruhl ML, Kilian SA, Schaper W. Inhibition of the ER-kinase cascade by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J Cardiovasc Pharmacol 2000;36:218–229.

    PubMed  CAS  Google Scholar 

  52. Strohm C, Barancik M, von Bruehl M, et al. Transcription inhibitor actinomycin-D abolishes the cardioprotective effect of ischemic reconditioning. Cardiovasc Res 2002;55:602–618.

    Article  PubMed  CAS  Google Scholar 

  53. Barancik M, Htun P, Strohm C, Kilian S, Schaper W. Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 2000;35:474–483.

    Article  PubMed  CAS  Google Scholar 

  54. Claeys MJ, Bosmans J, De Ceuninck M, et al. Effect of intracoronary adenosine infusion during coronary intervention on myocardial reperfusion injury in patients with acute myocardial infarction. Am J Cardiol 2004;94:9–13.

    Article  PubMed  CAS  Google Scholar 

  55. Riksen NP, Oyen WJ, Ramakers BP, et al. Oral therapy with dipyridamole limits ischemia-reperfusion injury in humans. Clin Pharmacol Ther 2005;78:52–59.

    Article  PubMed  CAS  Google Scholar 

  56. Figueredo VM, Diamond I, Zhou HZ, Camacho SA. Chronic dipyridamole therapy produces sustained protection against cardiac ischemia-reperfusion injury. Am J Physiol 1999;277:H2091–H2097.

    PubMed  CAS  Google Scholar 

  57. Kitakaze M, Minamino T, Node K, et al. Elevation of plasma adenosine levels may attenuate the severity of chronic heart failure. Cardiovasc Drugs Ther 1998;12:307–309.

    Article  PubMed  CAS  Google Scholar 

  58. Jageneau A, Schaper W. The effectiveness of lidoflazine and other coronary vasodilators after oral administration in the trained non-anesthetized dog. Arzneimittelforschung. 1967;17:582–587.

    PubMed  CAS  Google Scholar 

  59. Diener HC, Bogousslavsky J, Brass LM, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet 2004;364:331–337.

    PubMed  CAS  Google Scholar 

  60. Aktas B, Utz A, Hoenig-Liedl P, Walter U, Geiger J. Dipyridamole enhances NO(cGMP-mediated vasodilator-stimulated phosphoprotein phosphorylation and signaling in human platelets: in vitro and in vivo(ex vivo studies. Stroke. 2003;34:764–769.

    Article  PubMed  CAS  Google Scholar 

  61. Eisert W. Dipyridamole. In: Michelson A, ed. Platelets. London: Academic Press; 2002:803–815.

    Google Scholar 

  62. van Ryn J, Lorenz M, Merk H, Buchanan MR WG E. Accumulation of radiolabelled platelets and fibrin on the carotid artery of rabbits after angioplasty: effects of heparin and dipyridamole. Thromb Haemost 2003;90:1179–1186.

    PubMed  Google Scholar 

  63. Weyrich AS, Denis MM, Kuhlmann-Eyre JR, et al. Dipyridamole inhibits innate inflammatory gene expression in platelet-monocyte aggregates. Circulation 2005, Feb 8; 111(5):633–642.Epub 2005 Jan 24.

    Google Scholar 

  64. Torry RJ, O'Brien DM, Connell PM, Tomanek RJ. Dipyridamole-induced capillary growth in normal and hypertrophic hearts. Am J Physiol 1992;262:H980–H986.

    PubMed  CAS  Google Scholar 

  65. Belardinelli R, Belardinelli L, Shryock JC. Effects of dipyridamole on coronary collateralization and myocardial perfusion in patients with ischaemic cardiomyopathy. Eur Heart J 2001;22:1205–1213.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaper, W. Dipyridamole, an Underestimated Vascular Protective Drug. Cardiovasc Drugs Ther 19, 357–363 (2005). https://doi.org/10.1007/s10557-005-4659-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-005-4659-6

Key Words

Navigation