Skip to main content
Log in

Oxygen uptake efficiency plateau: physiology and reference values

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The relationship of oxygen uptake \( (\dot{V}{\text{O}}_{2} ) \) to ventilation \( (\dot{V}{\text{E}}) \), i.e., oxygen uptake efficiency (OUE) is known to differ between normal subjects and patients with congestive heart failure. However, only the oxygen uptake efficiency slope (OUES, i.e., slope of \( \dot{V}{\text{O}}_{2} /\log \dot{V}{\text{E)}} \) has previously been reported. To understand the physiology and to improve the usefulness of OUE in assessing cardiovascular function, we analyzed the complete response pattern of OUE during entire incremental exercise tests and ascertained effect of age, body size, gender, fitness, and ergometer type on exercise OUE to generate reference values in normal healthy subjects. We investigated the effect of age, gender, and fitness on OUE using incremental cardiopulmonary exercise in 474 healthy subjects, age 17–78 years, of which 57 were highly fit. The final methods of OUE analysis were: (1) OUE plateau at the highest values (OUEP), (2) OUE at anaerobic threshold (OUE@AT), and (3) OUES using the entire exercise period. The OUEP and OUE@AT were similar, highly reproducible, less variable than the OUES (p < 0.0001), and unaffected by the study sites or types of ergometry. The resultant prediction equations from 417 normal subjects for men were OUEP (mL/L) = 42.18 − 0.189 × years + 0.036 × cm and OUES [L/min/log(L/min)] = −0.610 − 0.032 × years + 0.023 × cm + 0.008 × kg. For women, OUEP (mL/L) = 39.16 − 0.189 × years + 0.036 × cm and OUES [L/min/log(L/min)] = −1.178 − 0.032 × years + 0.023 × cm + 0.008 × kg. OUE@AT was similar to OUEP. Extreme fitness has a minimal effect on OUEP. OUEP is advantageous, since it measures maximal oxygen extraction from ventilated air but does not require high intensity exercise. The OUEP is a non-invasive parameter dependent only on age, gender, height, and cardiovascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostoni P (2006) Cardiopulmonary exercise testing for heart failure patients: a hodgepodge of techniques, parameters and interpretations. In other words, the need for a time-break. Eur Heart J 27:633–634

    Article  PubMed  Google Scholar 

  • Aquilani R, Viglio S, Iadarola P, Opasich C, Testa A, Dioguardi FS, Pasini E (2008) Oral amino acid supplements improve exercise capacities in elderly patients with chronic heart failure. Am J Cardiol 101:104E–110E

    Article  PubMed  CAS  Google Scholar 

  • Arena R, Myers J, Hsu L, Peberdy MA, Pinkstaff S, Bensimhon D, Chase P, Vicenzi M, Guazzi M (2007) The minute ventilation/carbon dioxide production slope is prognostically superior to the oxygen uptake efficiency slope. J Card Fail 13:462–469

    Article  PubMed  Google Scholar 

  • Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, Guazzi M (2008) The influence of body mass index on the oxygen uptake efficiency slope in patients with heart failure. Int J Cardiol 125:270–272

    Article  PubMed  Google Scholar 

  • Arena R, Arrowood JA, Fei DY, Helm S, Kraft KA (2009) Maximal aerobic capacity and the oxygen uptake efficiency slope as predictors of large artery stiffness in apparently healthy subjects. J Cardiopulm Rehabil Prev 29:248–254

    PubMed  Google Scholar 

  • Arena R, Brubaker P, Moore B, Kitzman D (2010a) The oxygen uptake efficiency slope is reduced in older patients with heart failure and a normal ejection fraction. Int J Cardiol 144:101–102

    Article  PubMed  Google Scholar 

  • Arena R, Myers J, Abella J, Pinkstaff S, Brubaker P, Kitzman D, Peberdy MA, Bensimhon D, Chase P, Guazzi M (2010b) Prognostic significance of the oxygen uptake efficiency slope: percent-predicted versus actual value. Am J Cardiol 105:757–758

    Article  PubMed  Google Scholar 

  • Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, Tauchi N, Nishibata K (1996) Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol 28:1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Baba R, Nagashima M, Nagano Y, Ikoma M, Nishibata K (1999a) Role of the oxygen uptake efficiency slope in evaluating exercise tolerance. Arch Dis Child 81:73–75

    Article  PubMed  CAS  Google Scholar 

  • Baba R, Tsuyuki K, Kimura Y, Ninomiya K, Aihara M, Ebine K, Tauchi N, Nishibata K, Nagashima M (1999b) Oxygen uptake efficiency slope as a useful measure of cardiorespiratory functional reserve in adult cardiac patients. Eur J Appl Physiol Occup Physiol 80:397–401

    Article  PubMed  CAS  Google Scholar 

  • Baba R, Tsuyuki K, Yano H, Ninomiya K, Ebine K (2010) Robustness of the oxygen uptake efficiency slope to exercise intensity in patients with coronary artery disease. Nagoya J Med Sci 72:83–89

    PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    PubMed  CAS  Google Scholar 

  • Davies LC, Wensel R, Georgiadou P, Cicoira M, Coats AJ, Piepoli MF, Francis DP (2006) Enhanced prognostic value from cardiopulmonary exercise testing in chronic heart failure by non-linear analysis: oxygen uptake efficiency slope. Eur Heart J 27:684–690

    Article  PubMed  Google Scholar 

  • Defoor J, Schepers D, Reybrouck T, Fagard R, Vanhees L (2006) Oxygen uptake efficiency slope in coronary artery disease: clinical use and response to training. Int J Sports Med 27:730–737

    Article  PubMed  CAS  Google Scholar 

  • Drinkard B, Roberts MD, Ranzenhofer LM, Han JC, Yanoff LB, Merke DP, Savastano DM, Brady S, Yanovski JA (2007) Oxygen-uptake efficiency slope as a determinant of fitness in overweight adolescents. Med Sci Sports Exerc 39:1811–1816

    Article  PubMed  Google Scholar 

  • Gademan MG, Swenne CA, Verwey HF, Van De Vooren H, Haest JC, van Exel HJ, Lucas CM, Cleuren GV, Schalij MJ, van der Wall EE (2008) Exercise training increases oxygen uptake efficiency slope in chronic heart failure. Eur J Cardiovasc Prev Rehabil 15:140–144

    Google Scholar 

  • Glantz S, Slinker B (2001) Primer of applied regression and analysis of variance, 2nd edn. McGraw-Hill, San Francisco

    Google Scholar 

  • Gomibuchi M, Tanaka S, Koizumi K, Fujisaki T, Morioka H, Hosaka H, Yamada K, Shoji T (1990) Respiratory function on exercise as a predictor of complications after lung resection. Kyobu Geka 43:778–782

    PubMed  CAS  Google Scholar 

  • Hansen JE, Sue DY, Wasserman K (1984) Predicted values for clinical exercise testing. Am Rev Respir Dis 129:S49–S55

    PubMed  CAS  Google Scholar 

  • Hollenberg M, Tager IB (2000) Oxygen uptake efficiency slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. J Am Coll Cardiol 36:194–201

    Article  PubMed  CAS  Google Scholar 

  • Kasikcioglu E (2006) Which is the best parameter of submaximal cardiopulmonary exercise testing? Eur Heart J 27:2483

    Article  PubMed  Google Scholar 

  • Kasikcioglu E, Toker A, Tanju S, Arzuman P, Kayserilioglu A, Dilege S, Kalayci G (2009) Oxygen uptake kinetics during cardiopulmonary exercise testing and postoperative complications in patients with lung cancer. Lung Cancer 66:85–88

    Article  PubMed  Google Scholar 

  • Kumano K, Miyashita H, Tanaka T, Shimode M, Mori Y, Mikami H (1986) Energy expenditure during exercise on a treadmill before and after surgical correction of spinal deformities. Nippon Seikeigeka Gakkai Zasshi 60:439–448

    PubMed  CAS  Google Scholar 

  • Leyenson V, Furukawa S, Kuzma AM, Cordova F, Travaline J, Criner GJ (2000) Correlation of changes in quality of life after lung volume reduction surgery with changes in lung function, exercise, and gas exchange. Chest 118:728–735

    Article  PubMed  CAS  Google Scholar 

  • Mourot L, Perrey S, Tordi N, Rouillon JD (2004) Evaluation of fitness level by the oxygen uptake efficiency slope after a short-term intermittent endurance training. Int J Sports Med 25:85–91

    Article  PubMed  CAS  Google Scholar 

  • Myers J, Arena R, Dewey F, Bensimhon D, Abella J, Hsu L, Chase P, Guazzi M, Peberdy MA (2008) A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am Heart J 156:1177–1183

    Article  PubMed  Google Scholar 

  • Portney L, Watkins M (2000) Foundations of clinical research: applications to practice, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Stringer W, Hansen J, Wasserman K (1997) Cardiac output estimated non-invasively from oxygen uptake (VO2) during exercise. J Appl Physiol 82:908–912

    PubMed  CAS  Google Scholar 

  • Sun XG, Hansen JE, Ting H, Chuang ML, Stringer WW, Adame D, Wasserman K (2000) Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide. Chest 118:631–640

    Article  PubMed  CAS  Google Scholar 

  • Sun XG, Hansen JE, Oudiz RJ, Wasserman K (2001) Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 104:429–435

    Article  PubMed  CAS  Google Scholar 

  • Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K (2002a) Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med 166:1443–1448

    Article  PubMed  Google Scholar 

  • Sun XG, Hansen JE, Oudiz RJ, Wasserman K (2002b) Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension. Circulation 105:54–60

    Article  PubMed  Google Scholar 

  • Sun XG, Hansen JE, Beshai JF, Wasserman K (2010) Oscillatory breathing and exercise gas exchange abnormalities prognosticate early mortality and morbidity in heart failure. J Am Coll Cardiol 55:1814–1823

    Article  PubMed  Google Scholar 

  • Sun XG, Hansen JE, Stringer WW (2011) Oxygen uptake efficiency plateau best predicts early death in heart failure. Chest (under review)

  • Tsuyuki K, Kimura Y, Chiashi K, Matsushita C, Ninomiya K, Choh K, Hase H, Dohi S (2003) Oxygen uptake efficiency slope as monitoring tool for physical training in chronic hemodialysis patients. Ther Apher Dial 7:461–467

    Article  PubMed  Google Scholar 

  • Van Laethem C, Bartunek J, Goethals M, Nellens P, Andries E, Vanderheyden M (2005) Oxygen uptake efficiency slope, a new submaximal parameter in evaluating exercise capacity in chronic heart failure patients. Am Heart J 149:175–180

    Google Scholar 

  • Van Laethem C, Van De Veire N, De SJ, Bartunek J, De BG, Goethals M, Vanderheyden M (2006). Prospective evaluation of the oxygen uptake efficiency slope as a submaximal predictor of peak oxygen uptake in aged patients with ischemic heart disease. Am Heart J 152:297–315

    Google Scholar 

  • Van Laethem C, Goethals M, Verstreken S, Walravens M, Wellens F, De PM, Bartunek J, Vanderheyden M (2007a) Response of the oxygen uptake efficiency slope to orthotopic heart transplantation: lack of correlation with changes in central hemodynamic parameters and resting lung function. J Heart Lung Transplant 26:921–926

    Google Scholar 

  • Van Laethem C, Van De Veire N, De BG, Bihija S, Seghers T, Cambier D, Vanderheyden M, De SJ (2007b) Response of the oxygen uptake efficiency slope to exercise training in patients with chronic heart failure. Eur J Heart Fail 9:625–629

    Google Scholar 

  • Wasserman K (2002) Cardiopulmonary Exercise testing and cardiovascular health Futura, Armonk

  • Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    PubMed  CAS  Google Scholar 

  • Wasserman K, Whipp BJ, Casaburi R (1986) Respiratory control during exercise. In: Cherniack NS, Widdicombe G (eds) Handbook of Physiology. American Physiological Society, Bethesda, pp 595–619

    Google Scholar 

  • Wasserman K, Hansen H, Sue D, Stringer W, Whipp B (2005) Principles of exercise testing and interpretation, 4th edn. Lippincott Williams & Wilkins, Philadephia

    Google Scholar 

  • Wasserman K, Sun XG, Hansen JE (2007) Effect of biventricular pacing on the exercise pathophysiology of heart failure. Chest 132:250–261

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Nuria Garatachea, Department of Physiology, University of León, Spain and Dr. Thomas W. Storer, Laboratory of Exercise Science, El Camino College, Torrance, CA, USA who provided CPET data for this study. The study was partially supported by Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Guo Sun.

Additional information

Communicated by Susan A. Ward.

The partial data have been reported as a Poster presentation at American Physiology Society (APS)/Experimental Biology (EB) in April 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, XG., Hansen, J.E. & Stringer, W.W. Oxygen uptake efficiency plateau: physiology and reference values. Eur J Appl Physiol 112, 919–928 (2012). https://doi.org/10.1007/s00421-011-2030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2030-0

Keywords

Navigation