Skip to main content

Advertisement

Log in

No changes in lung function after a saturation dive to 2.5 MPa with intermittent reduction in \( P_{{{{\rm O}}_{{{\rm 2}}} }} \) during decompression

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Decompression stress and exposure to hyperoxia may cause a reduction in transfer factor of the lung for carbon monoxide and in maximal aerobic capacity after deep saturation dives. In this study lung function and exercise capacity were assessed before and after a helium–oxygen saturation dive to a pressure of 2.5 MPa where the decompression rate was reduced compared with previous deep dives, and the hyperoxic exposure was reduced by administering oxygen intermittently at pressures of 50 and 30 kPa during decompression. Eight experienced divers of median age 41 years (range 29–48) participated in the dive. The incidence of venous gas microemboli was low compared with previous deep dives. Except for one subject having treatment for decompression sickness, no changes in lung function or angiotensin converting enzyme, a marker of pulmonary endothelial cell damage, were demonstrated. The modified diving procedures with respect to decompression rate and hyperoxic exposure may have contributed to the lack of changes in lung function in this dive compared with previous deep saturation dives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brizio-Molteno L, Piano G, Warpeha RL, Solliday NH, Molteni A, Angelats J, Lewis N, Patejak-Radwanski H (1992) Angiotensin−1-converting enzyme activity as an index of pulmonary damage in thermal injury with or without smoke inhalation. Ann Clin Lab Sci 22:1–10

    Google Scholar 

  • Carturan D, Boussuges A, Vanuxem P, Bar-Hen A, Burnet H, Gardette B (2002) Ascent rate, age, maximal oxygen uptake, adiposity and circulating venous bubbles after diving. J Appl Physiol 93:1349–1356

    PubMed  CAS  Google Scholar 

  • Cotes JE (1979) Allowance for the effect on transfer factor of variation in haemoglobin concentration and in capillary oxygen tension. In: Cotes JE (ed) Lung function, 4th edn. Blackwell Scientific Publications, London, pp 245–246

    Google Scholar 

  • Cotes JE, Davey JS, Reed JW, Rooks M (1987) Respiratory effects of a single saturation dive to 300 m. Br J Ind Med 44:76–82

    PubMed  CAS  Google Scholar 

  • Cotes JE, Chinn DJ, Quanjer PhH, Roca J, Yernault J-C (1993) Standardization of the measurement of transfer factor (diffusion capacity). Eur Respir J 6(suppl 16):41–52

    Google Scholar 

  • Eckenhoff RG, Vann RD (1985) Air and nitrox saturation decompression. A report of 4 schedules and 77 subjects. Undersea Biomed Res 12:41–52

    PubMed  CAS  Google Scholar 

  • Fracica PJ, Knapp MJ, Piantadosi CA, Takeda K, Fulkerson WJ, Coleman RE, Wolfe WG, Crapo DJ (1991) Responses of baboons to prolonged hyperoxia: physiology and qualitative pathology. J Appl Physiol 71:2352–2362

    PubMed  CAS  Google Scholar 

  • Grønning M, Hjelle J, Segadal K, Skeidsvoll H, Thorsen E, Troland K, Sundal E, Nyland H (2003) Neurological deficits during and after a simulated dive to 250 MSW. In: Jansen EC, Mortensen CR, Hyldegaard O (eds) Proceedings of 29th Annual meeting of European Underwater and Baromedical Society, Copenhagen, p 138

  • Hamilton RW, Thalmann ED (2003) Decompression practice. In: Brubakk AO, Neuman TS (eds) Bennett and Elliott’s physiology and medicine of diving. Saunders, Edinburgh, pp 455–500

  • Hendricks PL, Hall DA, Hunter WL Jr, Haley PJ (1977) Extension of pulmonary oxygen tolerance in man at 2 ATA by intermittent oxygen exposure. J Appl Physiol 42:593–599

    PubMed  CAS  Google Scholar 

  • Hofsø D, Ulvik RJ, Segadal K, Hope A, Thorsen E (2005) Changes in erythropoietin and haemoglobin concentrations in response to saturation diving. Eur J Appl Physiol 95:191–196

    Article  PubMed  CAS  Google Scholar 

  • Johansen KB, Marstein S, Aas P (1987) Automated method for the determination of angiotensin converting enzyme in serum. Scand J Clin Lab Invest 47:411–414

    Article  PubMed  CAS  Google Scholar 

  • Lehnigk B, Jorres RA, Elliott DH, Holthaus J, Magnussen H (1997) Effects of a single saturation dive on lung function and exercise performance. Int Arch Occup Environ Health 69:201–208

    Article  PubMed  CAS  Google Scholar 

  • Marabotti C, Chiesa F, Scalzini A, Antonelli F, Lari R, Franchini C, Data PG (1999) Cardiac and humoral changes induced by recreational scuba diving. Undersea Hyperb Med 26:151–158

    PubMed  CAS  Google Scholar 

  • Nossum V, Koteng S, Brubakk AB (1999) Endothelial damage by bubbles in the pulmonary artery of the pig. Undersea Hyperb Med 26:1–8

    PubMed  CAS  Google Scholar 

  • Quanjer PhH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault J-C (1993) Lung volumes and forced ventilatory flows. Eur Respir J 6(suppl 16):5–40

    Google Scholar 

  • Segadal K, Risberg J, Eftedal O, Hope A, Thorsen E, Suzuki S, Stuhr L, Marstein S, Sundland H, Holand B, Hjelle J, Brubakk AO (2003) A simulated 250 MSW saturation dive: venous gas emboli, pulmonary function, maximum oxygen uptake and angiotensin converting enzyme. In: Jansen EC, Mortensen CR, Hyldegaard O (eds) Proceedings of 29th Annual meeting of European Underwater and Baromedical Society, Copenhagen, p 98

  • Spencer MP, Clark HF (1972) Precordial monitoring of pulmonary gas embolism and decompression sickness. Aerosp Med 43:762–767

    PubMed  CAS  Google Scholar 

  • Suzuki S, Ikeda T, Hashimoto A (1991) Decrease in the single breath diffusing capacity after saturation dives. Undersea Biomed Res 18:103–109

    PubMed  CAS  Google Scholar 

  • Tetzlaff K, Friege L, Reuter M (1998) Expiratory flow limitation in compressed air divers and oxygen divers. Eur Respir J 12:895–899

    Article  PubMed  CAS  Google Scholar 

  • Thorsen E, Segadal K, Kambestad BK, Gulsvik A (1990a) Divers’ lung function: small airways disease? Br J Ind Med 47:519–523

    CAS  Google Scholar 

  • Thorsen E, Hjelle J, Segadal K, Gulsvik A (1990b) Exercise tolerance and pulmonary gas exchange after deep saturation dives. J Appl Physiol 68:1809–1814

    CAS  Google Scholar 

  • Thorsen E, Segadal K, Reed JW, Elliott C, Gulsvik A, Hjelle J (1993) Contribution of hyperoxia to reduced pulmonary function after deep saturation dives. J Appl Physiol 75:657–662

    PubMed  CAS  Google Scholar 

  • Thorsen E, Segadal K, Kambestad BK (1994) Mechanisms of reduced pulmonary function after a saturation dive. Eur Respir J 7:4–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Stolt-Halliburton Joint Venture (SHJV), The Petroleum Safety Authority Norway (PSA), Esso Norge, Norsk Hydro ASA and Statoil ASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Thorsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorsen, E., Segadal, K., Stuhr, L.E.B. et al. No changes in lung function after a saturation dive to 2.5 MPa with intermittent reduction in \( P_{{{{\rm O}}_{{{\rm 2}}} }} \) during decompression. Eur J Appl Physiol 98, 270–275 (2006). https://doi.org/10.1007/s00421-006-0276-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0276-8

Keywords

Navigation