Skip to main content

Advertisement

Log in

Bacterial Induction of Early Response Genes and Activation of Proapoptotic Factors in Pleural Mesothelial Cells

  • Published:
Lung Aims and scope Submit manuscript

Abstract

In bacterial empyema the pleural mesothelium is constantly exposed to microorganisms. Staphylococcus aureus (S. aureus) is one of the most frequent pathogens associated with empyema. In an earlier study we demonstrated that S. aureus induced barrier dysfunction in pleural mesothelial cell monolayers. In the present study we report that S. aureus activates the early response genes c-fos and c-jun and activator protein-1 (AP-1), and induces proapoptosis genes Bad and Bak in primary mouse pleural mesothelial cells (PMCs). Our data indicate that in PMCs S. aureus induces apoptosis in a time- and multiplicity of infection (MOI)-dependent manner. Staphylococcus aureus induced Bcl 2, Bcl-X L, c-fos, c-jun, and AP-1 expression in PMCs during the initial phase of infection. In S. aureus-infected PMCs, Bad and Bak gene expression was increased and correlated with DNA fragmentation and cytochrome-c release. Bcl 2 and Bcl-X L gene expression was significantly lower in S. aureus-infected PMCs than in uninfected PMCs 12 h postinfection. We conclude that at the initial stage of infection S. aureus modulates expression of early response genes c-fos and c-jun, and in the late phase of infection S. aureus induces expression of proapoptotic genes Bak and Bad in PMCs. Silencing AP-1 significantly inhibited S. aureus-induced Bak and Bad expression in PMCs. The upregulation of early response genes during the early phase of infection may contribute to the activation of proapoptotic genes Bak and Bad and release of cytochrome-c, caspase-3 thereby resulting in apoptosis in PMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ashbaugh DG (1991) Empyema thoracis. Factors influencing morbidity and mortality. Chest 99:1162–1165

    Article  PubMed  CAS  Google Scholar 

  2. Freij BJ, Kusmiesz H, Nelson JD , McCracken GH Jr (1984) Parapneumonic effusions and empyema in hospitalized children: a retrospective review of 227 cases. Pediatr Infect Dis 3:578–591

    Article  PubMed  CAS  Google Scholar 

  3. Afessa B, Green B (2000) Bacterial pneumonia in hospitalized patients with HIV infection: the Pulmonary Complications, ICU Support, and Prognostic Factors of Hospitalized Patients with HIV (PIP) Study. Chest 117:1017–1022

    Article  PubMed  CAS  Google Scholar 

  4. Hardie W, Bokulic R, Garcia VF, Reising SF, Christie CD (1996) Pneumococcal pleural empyemas in children. Clin Infect Dis 22:1057–1063

    PubMed  CAS  Google Scholar 

  5. Satpathy SK, Behera CK, Nanda P (2005) Outcome of parapneumonic empyema. Indian J Pediatr 72:197–199

    PubMed  CAS  Google Scholar 

  6. Strange C, Sahn SA (1999) The definitions and epidemiology of pleural space infection. Semin Respir Infect 14:3–8

    PubMed  CAS  Google Scholar 

  7. Mohammed KA, Nasreen N, Ward MJ, Antony VB (2000) Induction of acute pleural inflammation by Staphylococcus aureus. I. CD4+ T cells play a critical role in experimental empyema. J Infect Dis 181:1693–1699

    Article  PubMed  CAS  Google Scholar 

  8. Mohammed KA, Nasreen N, Hardwick J, Logie CS, Patterson CE, Antony VB (2001) Bacterial induction of pleural mesothelial monolayer barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 281:L119–L125

    PubMed  CAS  Google Scholar 

  9. Hamill RJ, Vann JM, Proctor RA (1986) Phagocytosis of Staphylococcus aureus by cultured bovine aortic endothelial cells: model for postadherence events in endovascular infections. Infect Immun 54:833–836

    PubMed  CAS  Google Scholar 

  10. Ogawa SK, Yurberg ER, Hatcher VB, Levitt MA, Lowy FD (1985) Bacterial adherence to human endothelial cells in vitro. Infect Immun 50:218–224

    PubMed  CAS  Google Scholar 

  11. Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR (1998) Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66:336–342

    PubMed  CAS  Google Scholar 

  12. Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:431–439

    Article  PubMed  CAS  Google Scholar 

  13. Menzies BE, Kourteva I (1998) Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect Immun 66:5994–5998

    PubMed  CAS  Google Scholar 

  14. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  15. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  16. Henkart PA, Grinstein S (1996) Apoptosis: mitochondria resurrected? J Exp Med 183:1293–1295

    Article  PubMed  CAS  Google Scholar 

  17. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (1995) Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–736

    Article  PubMed  CAS  Google Scholar 

  18. Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66

    Article  PubMed  CAS  Google Scholar 

  19. Datta R, Kharbanda S, Kufe D (1990) Regulation of jun-B gene expression by 1-beta-D-arabinofuranosyl-cytosine in human myeloid leukemia cells. Mol Pharmacol 38:435–439

    PubMed  CAS  Google Scholar 

  20. Kharbanda SM, Sherman ML, Kufe DW (1990) Transcriptional regulation of c-jun gene expression by arabinofuranosylcytosine in human myeloid leukemia cells. J Clin Invest 86:1517–1523

    Article  PubMed  CAS  Google Scholar 

  21. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    PubMed  CAS  Google Scholar 

  22. Piechaczyk M, Blanchard JM (1994) c-fos proto-oncogene regulation and function. Crit Rev Oncol Hematol 17:93–131

    Article  PubMed  CAS  Google Scholar 

  23. Mohammed KA, Nasreen N, Ward MJ, Antony VB (1999) Helper T cell type 1 and 2 cytokines regulate C-C chemokine expression in mouse pleural mesothelial cells. Am J Respir Crit Care Med 159:1653–1659

    PubMed  CAS  Google Scholar 

  24. Andrews PM, Porter KR (1973) The ultrastructural morphology and possible functional significance of mesothelial microvilli. Anat Rec 177:409–426

    Article  PubMed  CAS  Google Scholar 

  25. Connell ND, Rheinwald JG (1983) Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34:245–253

    Article  PubMed  CAS  Google Scholar 

  26. Mohammed KA, Nasreen N, Ward MJ, Antony VB (1998) Macrophage inflammatory protein-1alpha C-C chemokine in parapneumonic pleural effusions. J Lab Clin Med 132:202–209

    Article  PubMed  CAS  Google Scholar 

  27. Nasreen N, Mohammed KA, Dowling PA, Ward MJ, Galffy G, Antony VB (2000) Talc induces apoptosis in human malignant mesothelioma cells in vitro. Am J Respir Crit Care Med 161:595–600

    PubMed  CAS  Google Scholar 

  28. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  29. Heintz NH, Janssen YM, Mossman BT (1993) Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci U S A 90:3299–3303

    Article  PubMed  CAS  Google Scholar 

  30. Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608

    Article  PubMed  CAS  Google Scholar 

  31. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    Article  PubMed  CAS  Google Scholar 

  32. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  PubMed  CAS  Google Scholar 

  33. Colotta F, Polentarutti N, Sironi M, Mantovani A (1992) Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J Biol Chem 267:18278–18283

    PubMed  CAS  Google Scholar 

  34. Grassilli E, Carcereri de Prati A, Monti D, Troiano L, Menegazzi M, Barbieri D, Franceschi C, Suzuki H (1992) Studies of the relationship between cell proliferation and cell death. II. Early gene expression during concanavalin A-induced proliferation or dexamethasone-induced apoptosis of rat thymocytes. Biochem Biophys Res Commun 188:1261–1266

    Article  PubMed  CAS  Google Scholar 

  35. Smeyne RJ, Vendrell M, Hayward M, Baker SJ, Miao GG, Schilling K, Robertson LM, Curran T, Morgan JI (1993) Continuous c-fos expression precedes programmed cell death in vivo. Nature 363:166–169

    Article  PubMed  CAS  Google Scholar 

  36. Preston GA, Lyon TT, Yin Y, Lang JE, Solomon G, Annab L, Srinivasan DG, Alcorta DA, Barrett JC (1996) Induction of apoptosis by c-Fos protein. Mol Cell Biol 16:211–218

    PubMed  CAS  Google Scholar 

  37. Ellington JK, Elhofy A, Bost KL, Hudson MC (2001) Involvement of mitogen-activated protein kinase pathways in Staphylococcus aureus invasion of normal osteoblasts. Infect Immun 69:5235–5242

    Article  PubMed  CAS  Google Scholar 

  38. Tang P, Rosenshine I, Finlay BB (1994) Listeria monocytogenes, an invasive bacterium, stimulates MAP kinase upon attachment to epithelial cells. Mol Biol Cell 5:455–464

    PubMed  CAS  Google Scholar 

  39. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380:75–79

    Article  PubMed  CAS  Google Scholar 

  40. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  PubMed  CAS  Google Scholar 

  41. Reed JC (1996) Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Inst Mitt (97):72–100

  42. Ibrado AM, Huang Y, Fang G, Bhalla K (1996) Bcl-xL overexpression inhibits taxol-induced Yama protease activity and apoptosis. Cell Growth Differ 7:1087–1094

    PubMed  CAS  Google Scholar 

  43. Zhang M, Liu H, Guo R, Ling Y, Wu X, Li B, Roller PP, Wang S, Yang D (2003) Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochem Pharmacol 66:93–103

    Article  PubMed  CAS  Google Scholar 

  44. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  45. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  PubMed  CAS  Google Scholar 

  46. Haslinger-Loffler B, Wagner B, Bruck M, Strangfeld K, Grundmeier M, Fischer U, Volker W, Peters G, Schulze-Osthoff K, Sinha B (2006) Staphylococcus aureus induces caspase-independent cell death in human peritoneal mesothelial cells. Kidney Int 70:1089–1098

    Article  PubMed  CAS  Google Scholar 

  47. Yamasaki E, Wada A, Kumatori A, Nakagawa I, Funao J, Nakayama M, Hisatsune J, Kimura M, Moss J, Hirayama T (2006) Helicobacter pylori vacuolating cytotoxin induces activation of the proapoptotic proteins Bax and Bak, leading to cytochrome c release and cell death, independent of vacuolation. J Biol Chem 281:11250–11259

    Article  PubMed  CAS  Google Scholar 

  48. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 95:4997–5002

    Article  PubMed  CAS  Google Scholar 

  49. Wesson CA, Deringer J, Liou LE, Bayles KW, Bohach GA, Trumble WR (2000) Apoptosis induced by Staphylococcus aureus in epithelial cells utilizes a mechanism involving caspases 8 and 3. Infect Immun 68:2998–3001

    Article  PubMed  CAS  Google Scholar 

  50. Baran J, Weglarczyk K, Mysiak M, Guzik K, Ernst M, Flad HD, Pryjma J (2001) Fas (CD95)-Fas ligand interactions are responsible for monocyte apoptosis occurring as a result of phagocytosis and killing of Staphylococcus aureus. Infect Immun 69:1287–1297

    Article  PubMed  CAS  Google Scholar 

  51. Urnowey S, Ansai T, Bitko V, Nakayama K, Takehara T, Barik S (2006) Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling. BMC Microbiol 6:26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grant NIH RO1 AI41877-04 from the National Institutes of Health and by a Veterans Affairs merit review grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal A. Mohammed.

Additional information

Kamal A. Mohammed, Najmunnisa Nasreen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammed, K.A., Nasreen, N. & Antony, V.B. Bacterial Induction of Early Response Genes and Activation of Proapoptotic Factors in Pleural Mesothelial Cells. Lung 185, 355–365 (2007). https://doi.org/10.1007/s00408-007-9046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-007-9046-6

Keywords

Navigation