Skip to main content
Log in

Bronchial morphometry in smokers: comparison with healthy subjects by using 3D CT

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The assessment of airway dimensions in patients with airway disease by using computed tomography (CT) has been limited by the obliquity of bronchi, the ability to identify the bronchial generation, and the limited number of bronchial measurements. The aims of the present study were (i) to analyze cross-sectional bronchial dimensions after automatic orthogonal reconstruction of all visible bronchi on CT images, and (ii) to compare bronchial morphometry between smokers and nonsmokers. CT and pulmonary function tests were performed in 18 males separated into two groups: 9 nonsmokers and 9 smokers. Bronchial wall area (WA) and lumen area (LA) were assessed using dedicated 3D software able to provide accurate cross-sectional measurements of all visible bronchi on CT. WA/LA and WA/(WA+LA) ratios were computed and all parameters were compared between both groups. Smokers demonstrated greater WA, smaller LA, and consequently greater LA/WA and LA/(WA+LA) ratios than nonsmokers. These differences occurred downward starting at the fourth bronchial generation. 3D quantitative CT method is able to demonstrate significant changes in bronchial morphometry related to tobacco consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653

    Article  PubMed  CAS  Google Scholar 

  2. Tiddens HA, Pare PD, Hogg JC, Hop WC, Lambert R, de Jongste JC (1995) Cartilaginous airway dimensions and airflow obstruction in human lungs. Am J Respir Crit Care Med 152:260–266

    PubMed  CAS  Google Scholar 

  3. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555

    Article  PubMed  Google Scholar 

  4. Nakano Y, Muro S, Sakai H, Hirai T, Chin K, Tsukino M, Nishimura K, Itoh H, Pare PD, Hogg JC, Mishima M (2000) Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162:1102–1108

    PubMed  CAS  Google Scholar 

  5. Deveci F, Murat A, Turgut T, Altuntas E, Muz M (2004) Airway wall thickness in patients with COPD and healthy current smokers and healthy non-smokers: assessment with high resolution computed tomographic scanning. Respiration 71:602–610

    Article  PubMed  Google Scholar 

  6. Berger P, Perot V, Desbarats P, Tunon-de-Lara JM, Marthan R, Laurent F (2005) Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 235:1055–1064

    Article  PubMed  Google Scholar 

  7. Orlandi I, Moroni C, Camiciottoli G, Bartolucci M, Pistolesi M, Villari N, Mascalchi M (2005) Chronic obstructive pulmonary disease: thin-section CT measurement of airway wall thickness and lung attenuation. Radiology 234:604–610

    Article  PubMed  Google Scholar 

  8. Hasegawa M, Nasuhara Y, Onodera Y, Makita H, Nagai K, Fuke S, Ito Y, Betsuyaku T, Nishimura M (2006) Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:1309–1315

    Article  PubMed  Google Scholar 

  9. Montaudon M, Berger P, de Dietrich G, Braquelaire A, Marthan R, Tunon-de-Lara JM, Laurent F (2007) Assessment of airways with three-dimensional quantitative thin-section CT: in vitro and in vivo validation. Radiology 242:563–572

    Article  PubMed  Google Scholar 

  10. Brillet PY, Fetita CI, Beigelman-Aubry C, Saragaglia A, Perchet D, Preteux F, Grenier PA (2007) Quantification of bronchial dimensions at MDCT using dedicated software. Eur Radiol 17:1483–1489

    Article  PubMed  CAS  Google Scholar 

  11. Montaudon M, Berger P, Cangini-Sacher A, de Dietrich G, Tunon-de-Lara JM, Marthan R, Laurent F (2007) Bronchial measurement with three-dimensional quantitative thin-section CT in patients with cystic fibrosis. Radiology 242:573–581

    Article  PubMed  Google Scholar 

  12. Mauroy B, Filoche M, Weibel ER, Sapoval B (2004) An optimal bronchial tree may be dangerous. Nature 427:633–636

    Article  PubMed  CAS  Google Scholar 

  13. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  PubMed  CAS  Google Scholar 

  14. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26:511–522

    Article  PubMed  CAS  Google Scholar 

  15. Montaudon M, Desbarats P, Berger P, de Dietrich G, Marthan R, Laurent F (2007) Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models. J Anat 211:579–588

    Article  PubMed  CAS  Google Scholar 

  16. Weibel ER, Gomez DM (1962) Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 137:577–585

    Article  PubMed  CAS  Google Scholar 

  17. King GG, Muller NL, Pare PD (1999) Evaluation of airways in obstructive pulmonary disease using high-resolution computed tomography. Am J Respir Crit Care Med 159:992–1004

    PubMed  CAS  Google Scholar 

  18. Montaudon M, Berger P, Blachere H, De Boucaud L, Latrabe V, Laurent F (2001) Thin-section CT of the lung: influence of 0.5-s gantry rotation and ECG triggering on image quality. Eur Radiol 11:1681–1687

    Article  PubMed  CAS  Google Scholar 

  19. Brown RH, Mitzner W (1996) Effect of lung inflation and airway muscle tone on airway diameter in vivo. J Appl Physiol 80:1581–1588

    PubMed  CAS  Google Scholar 

  20. Becker MD, Berkmen YM, Austin JH, Mun IK, Romney BM, Rozenshtein A, Jellen PA, Yip CK, Thomashow B, Ginsburg ME (1998) Lung volumes before and after lung volume reduction surgery: quantitative CT analysis. Am J Respir Crit Care Med 157:1593–1599

    PubMed  CAS  Google Scholar 

  21. Nakano Y, Wong JC, de Jong PA, Buzatu L, Nagao T, Coxson HO, Elliott WM, Hogg JC, Pare PD (2005) The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171:142–146

    Article  PubMed  Google Scholar 

  22. Berger P, Laurent F, Begueret H, Perot V, Rouiller R, Raherison C, Molimard M, Marthan R, Tunon-De-Lara JM (2003) Structure–function of small airways in smokers: relationship between air trapping on CT and airway inflammation. Radiology 228:85–94

    Article  PubMed  Google Scholar 

  23. Trian T, Benard G, Begueret H, Rossignol R, Girodet PO, Ghosh D, Ousova O, Vernejoux JM, Marthan R, Tunon De Lara JM, Berger P (2007) Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med 204:3173–3181

    Article  PubMed  CAS  Google Scholar 

  24. Matsuoka S, Kurihara Y, Nakajima Y, Niimi H, Ashida H, Kaneoya K (2005) Serial change in airway lumen and wall thickness at thin-section CT in asymptomatic subjects. Radiology 234:595–603

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Montaudon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montaudon, M., Berger, P., Lederlin, M. et al. Bronchial morphometry in smokers: comparison with healthy subjects by using 3D CT. Eur Radiol 19, 1328–1334 (2009). https://doi.org/10.1007/s00330-008-1284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1284-3

Keywords

Navigation