Skip to main content

Advertisement

Log in

Potential biomarkers for detecting pulmonary arterial hypertension in patients with systemic sclerosis

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) is the major complication of systemic sclerosis (SSc) and the main cause of morbi-mortality. It is important to find predictors for this vascular problem. The objective of this study was to determine the serum levels of different biomarkers in patients with SSc and secondary PAH and to compare them with those of healthy control subjects to define their potential role as predictors of PAH. Cross-section study in which 20 patients with SSc were included. PAH was diagnosed by echocardiogram. The optical densities of endoglin (Eng), endothelin-1 (ET-1), platelet-derived growth factor (PDGF), tumoral necrosis factor alpha (TNF-α), Transforming growth factor beta 2 (TGF-β2) and Interleukin 8 (IL-8) were measured in 20 patients with SSc and 20 healthy controls matched by sex. The differences found between the group of patients with PAH and the control group were (mean or median and range): ET-1 (0.20; 0.10–0.35 vs. 0.16; 0.10–0.24; P = 0.0276), IL-8 (195.7; 45.5–504 vs. 118.9; 23–299.5; P = 0.0364), TNF-α (0.70; 0.50–0.96 vs. 0.48; 0.38–0.65; P = 1 × 10−8) and Eng (0.95; 0.57–1.72 vs. 0.75; 0.57–0.89; P = 0.0028). A correlation was found between the progression of the disease and the development of Raynaud’s phenomenon (Rho: 0.67 and P = 0.0011), ET-1 and Eng (Rho: 0.53 and P = 0.0196), and between IL-8 and Eng (Rho: 0.68 and P = 0.0019). In conclusions, the elevation of the serum levels of Eng and ET-1 could represent a useful tool as PAH biomarkers. Nevertheless, the diagnostic value of these markers needs to be determined by prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. LeRoy EC, Black C, Fleischmajer R et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    PubMed  CAS  Google Scholar 

  2. Kahaleh MB (1992) The role of vascular endothelium in fibroblast activation and tissue fibrosis, particularly in scleroderma (systemic sclerosis) and pachydermoperiostosis (primary hypertrophic osteoarthropathy). Clin Exp Rheumatol 10(Suppl 7):51–56

    PubMed  Google Scholar 

  3. Block JASW (2001) Raynaud’s phenomenon. Lancet 23:20–28

    Google Scholar 

  4. Herrick AL (2000) Vascular function in systemic sclerosis. Curr Opin Rheumatol 12:527–533. doi:10.1097/00002281-200011000-00009

    Article  PubMed  CAS  Google Scholar 

  5. Denton CP, Black CM (2003) Pulmonary hypertension in systemic sclerosis. Rheum Dis Clin North Am 29:335–349. doi:10.1016/S0889-857X(03)00024-3

    Article  PubMed  Google Scholar 

  6. Coghlan JG, Mukerjee D (2001) The heart and pulmonary vasculature in scleroderma: clinical features and pathobiology. Curr Opin Rheumatol 13:495–499. doi:10.1097/00002281-200111000-00008

    Article  PubMed  CAS  Google Scholar 

  7. Wigley FMLJ, Mayes M, McLain D et al (2005) The prevalence of undiagnosed pulmonary arterial hypertension in subjects with connective tissue disease at the secondary health care level of community-based rheumatologists. Arthritis Rheum 52:2125–2132. doi:10.1002/art.21131

    Article  PubMed  Google Scholar 

  8. British Cardiac Society Guidelines (2001) Recommendations on the management of pulmonary hypertension in clinical practice. Heart 86(Suppl):I1–I13

    Google Scholar 

  9. Vancheeswaran R, Magoulas T, Efrat G et al (1994) Circulating endothelin-1 levels in systemic sclerosis subsets-a marker of fibrosis or vascular dysfunction? J Rheumatol 21:1838–1844

    PubMed  CAS  Google Scholar 

  10. Cambrey AD, Harrison NK, Dawes KE et al (1994) Increased levels of endothelin-1 in bronchoalveolar lavage fluid from patients with systemic sclerosis contribute to fibroblast mitogenic activity in vitro. Am J Respir Cell Mol Biol 11:439–445

    PubMed  CAS  Google Scholar 

  11. Morelli S, Ferri C, Di Francesco L et al (1995) Plasma endothelin-1 levels in patients with systemic sclerosis: influence of pulmonary or systemic arterial hypertension. Ann Rheum Dis 54:730–734

    Article  PubMed  CAS  Google Scholar 

  12. Morelli S, Ferri C, Polettini E et al (1995) Plasma endothelin-1 levels, pulmonary hypertension, and lung fibrosis in patients with systemic sclerosis. Am J Med 99:255–260. doi:10.1016/S0002-9343(99)80157-0

    Article  PubMed  CAS  Google Scholar 

  13. Yamane K, Miyauchi T, Suzuki N et al (1992) Significance of plasma endothelin-1 levels in patients with systemic sclerosis. J Rheumatol 19:1566–1571

    PubMed  CAS  Google Scholar 

  14. Kahaleh MB (1991) Endothelin, an endothelial-dependent vasoconstrictor in scleroderma. Enhanced production and profibrotic action. Arthritis Rheum 34:978–983. doi:10.1002/art.1780340807

    Article  PubMed  CAS  Google Scholar 

  15. Venkatesan NRP, Ludwing MS (2002) Proteoglycan expression in bleomycin lung fibroblasts: role of transforming growth factor-beta (1) and interferon-gamma. Am J Physiol Lung Cell Mol Physiol 283:L806–L814

    PubMed  CAS  Google Scholar 

  16. Atamas SP, White B (2003) The role of chemokines in the pathogenesis of scleroderma. Curr Opin Rheumatol 15:772–777. doi:10.1097/00002281-200311000-00015

    Article  PubMed  CAS  Google Scholar 

  17. Varga J (2002) Scleroderma and Smads: dysfunctional Smad family dynamics culminating in fibrosis. Arthritis Rheum 46:1703–1713. doi:10.1002/art.10413

    Article  PubMed  CAS  Google Scholar 

  18. Tamby MC, Chanseaud Y, Guillevin L et al (2003) New insights into the pathogenesis of systemic sclerosis. Autoimmun Rev 2:152–157. doi:10.1016/S1568-9972(03)00004-1

    Article  PubMed  CAS  Google Scholar 

  19. Verrecchia F, Mauviel A, Farge D (2006) Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis. Autoimmun Rev 5:563–569. doi:10.1016/j.autrev.2006.06.001

    Article  PubMed  CAS  Google Scholar 

  20. Denton CP, Abraham DJ (2001) Transforming growth factor-beta and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol 13:505–511. doi:10.1097/00002281-200111000-00010

    Article  PubMed  CAS  Google Scholar 

  21. Sambo P, Baroni SS, Luchetti M et al (2001) Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum 44:2653–2664. doi:10.1002/1529-0131(200111)44:11<;2653::AID-ART445>;3.0.CO;2-1

    Article  PubMed  CAS  Google Scholar 

  22. Denton CP, Black CM, Abraham DJ (2006) Mechanisms and consequences of fibrosis in systemic sclerosis. Nat Clin Pract Rheumatol 2:134–144. doi:10.1038/ncprheum0115

    Article  PubMed  Google Scholar 

  23. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567. doi:10.1172/JCI31139

    Article  PubMed  CAS  Google Scholar 

  24. Bolster MB, Ludwicka A, Sutherland SE et al (1997) Cytokine concentrations in bronchoalveolar lavage fluid of patients with systemic sclerosis. Arthritis Rheum 40:743–751. doi:10.1002/art.1780400422

    Article  PubMed  CAS  Google Scholar 

  25. Kadono T, Kikuchi K, Ihn H et al (1998) Increased production of interleukin 6 and interleukin 8 in scleroderma fibroblasts. J Rheumatol 25:296–301

    PubMed  CAS  Google Scholar 

  26. Koch AE, Kronfeld-Harrington LB, Szekanecz Z et al (1993) In situ expression of cytokines and cellular adhesion molecules in the skin of patients with systemic sclerosis. Their role in early and late disease. Pathobiology 61:239–246

    Article  PubMed  CAS  Google Scholar 

  27. Strieter RMBJ, Keane MP (2002) CXC chemokines in angiogenesis related to pulmonary fibrosis. Chest 122:298S–301S. doi:10.1378/chest.122.6_suppl.298S

    Article  PubMed  CAS  Google Scholar 

  28. Burrows FJDE, Tazzari PL, Amlot P et al (1995) Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1:1623–1634

    PubMed  CAS  Google Scholar 

  29. Torsney ECR, Parums D, Collis M et al (2002) Inducible expression of human endoglin during inflammation and wound healing in vivo. Inflamm Res 51:464–470. doi:10.1007/PL00012413

    Article  PubMed  CAS  Google Scholar 

  30. Wong SHHL, Chevalier S, Philip A (2000) Endoglin expression on human microvascular endothelial cells association with betaglycan and formation of higher order complexes with TGF-beta signalling receptors. Eur J Biochem 267:5550–5560. doi:10.1046/j.1432-1327.2000.01621.x

    Article  PubMed  CAS  Google Scholar 

  31. Walker JG, Stirling J, Beroukas D et al (2005) Histopathological and ultrastructural features of dermal telangiectasias in systemic sclerosis. Pathology 37:220–225. doi:10.1080/00313020500033262

    Article  PubMed  Google Scholar 

  32. Leask A, Abraham DJ, Finlay DR et al (2002) Dysregulation of transforming growth factor beta signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum 46:1857–1865. doi:10.1002/art.10333

    Article  PubMed  CAS  Google Scholar 

  33. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic, Therapeutic Criteria Committee (1980) Arthritis and Rheum 23:581–590

    Article  Google Scholar 

  34. Battle RW, Davitt MA, Cooper SM et al (1996) Prevalence of pulmonary hypertension in limited and diffuse scleroderma. Chest 110:1515–1519. doi:10.1378/chest.110.6.1515

    Article  PubMed  CAS  Google Scholar 

  35. Mukerjee D, George St D, Coleiro B et al (2003) Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann Rheum Dis 62:1088–1093. doi:10.1136/ard.62.11.1088

    Article  PubMed  CAS  Google Scholar 

  36. Clements PJ, Lachenbruch PA, Seibold JR et al (1993) Skin thickness score in systemic sclerosis: an assessment of interobserver variability in 3 independent studies. J Rheumatol 20:1892–1896

    PubMed  CAS  Google Scholar 

  37. Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S (2005) Soluble adhesion molecules (sVCAM-1, sE-selectin), vascular endothelial growth factor (VEGF) and endothelin-1 in patients with systemic sclerosis: relationship to organ systemic involvement. Clin Rheumatol 24:111–116. doi:10.1007/s10067-004-0987-3

    Article  PubMed  Google Scholar 

  38. Southcott AM, Jones KP, Li D et al (1995) Interleukin-8. Differential expression in lone fibrosing alveolitis and systemic sclerosis. Am J Respir Crit Care Med 151:1604–1612

    PubMed  CAS  Google Scholar 

  39. Crestani B, Seta N, Palazzo E et al (1994) Interleukin-8 and neutrophils in systemic sclerosis with lung involvement. Am J Respir Crit Care Med 150:1363–1367

    PubMed  CAS  Google Scholar 

  40. Furuse S, Fujii H, Kaburagi Y et al (2003) Serum concentrations of the CXC chemokines interleukin 8 and growth-regulated oncogene-alpha are elevated in patients with systemic sclerosis. J Rheumatol 30:1524–1528

    PubMed  CAS  Google Scholar 

  41. Hasegawa M, Fujimoto M, Kikuchi K et al (1997) Elevated serum tumor necrosis factor-alpha levels in patients with systemic sclerosis: association with pulmonary fibrosis. J Rheumatol 24:663–665

    PubMed  CAS  Google Scholar 

  42. Majewski S, Wojas-Pelc A, Malejczyk M et al (1999) Serum levels of soluble TNF alpha receptor type I and the severity of systemic sclerosis. Acta Derm Venereol 79:207–210. doi:10.1080/000155599750010986

    Article  PubMed  CAS  Google Scholar 

  43. Meloni F, Caporali R, Marone Bianco A et al (2004) BAL cytokine profile in different interstitial lung diseases: a focus on systemic sclerosis. Sarcoidosis Vasc Diffuse Lung Dis 21:111–118

    PubMed  Google Scholar 

  44. Scala E, Pallotta S, Frezzolini A et al (2004) Cytokine and chemokine levels in systemic sclerosis: relationship with cutaneous and internal organ involvement. Clin Exp Immunol 138:516–540. doi:10.1111/j.1365-2249.2004.02642.x

    Article  Google Scholar 

  45. Hussein MR, Hassan HI, Hofny ER et al (2005) Alterations of mononuclear inflammatory cells, CD4/CD8 + T cells, interleukin 1beta, and tumour necrosis factor alpha in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis. J Clin Pathol 58:178–184. doi:10.1136/jcp.2004.019224

    Article  PubMed  CAS  Google Scholar 

  46. Fujimoto M, Hasegawa M, Hamaguchi Y et al (2006) A clue for telangiectasis in systemic sclerosis: elevated serum soluble endoglin levels in patients with the limited cutaneous form of the disease. Dermatology 213:88–92. doi:10.1159/000093846

    Article  PubMed  CAS  Google Scholar 

  47. Snowden N, Coupes B, Herrick A et al (1994) Plasma TGF beta in systemic sclerosis: a cross-sectional study. Ann Rheum Dis 53:763–767

    Article  PubMed  CAS  Google Scholar 

  48. Dziadzio M, Smith RE, Abraham DJ et al (2005) Circulating levels of active transforming growth factor beta1 are reduced in diffuse cutaneous systemic sclerosis and correlate inversely with the modified Rodnan skin score. Rheumatology (Oxford) 44:1518–1524. doi:10.1093/rheumatology/kei088

    Article  CAS  Google Scholar 

  49. Ludwicka A, Ohba T, Trojanowska M et al (1995) Elevated levels of platelet derived growth factor and transforming growth factor-beta 1 in bronchoalveolar lavage fluid from patients with scleroderma. J Rheumatol 22:1876–1883

    PubMed  CAS  Google Scholar 

  50. Kikuchi K, Kadono T, Ihn H et al (1995) Growth regulation in scleroderma fibroblasts: increased response to transforming growth factor-beta 1. J Invest Dermatol 105:128–132. doi:10.1111/1523-1747.ep12313452

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

To our patients and their families. The financial support for the present study was provided by The Vicerrectoria de Investigación and Division de Investigación de Bogotá, Universidad Nacional de Colombia. None of the authors have any financial interest that has influenced the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Coral-Alvarado or Jose Felix Restrepo.

Additional information

Drs. P. Coral-Alvarado and G. Quintana contributed equally to this work and both should be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coral-Alvarado, P., Quintana, G., Garces, M.F. et al. Potential biomarkers for detecting pulmonary arterial hypertension in patients with systemic sclerosis. Rheumatol Int 29, 1017–1024 (2009). https://doi.org/10.1007/s00296-008-0829-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-008-0829-8

Keywords

Navigation