Skip to main content
Log in

Nicotine place preference in the mouse: influences of prior handling, dose and strain and attenuation by nicotinic receptor antagonists

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Although conditioned place preferences (CPPs) are seen with most abused drugs, nicotine does not always produce a preference in this design.

Objectives

The goals of the present experiment were to (1) examine various factors that could contribute to these inconsistent results and (2) begin to evaluate the specific nicotinic receptors involved in the nicotine CPP.

Methods

The influences of prior handling, environmental habituation, and injection habituation on a nicotine CPP were first evaluated in ICR mice. Subsequently, various nicotine doses were assessed for their abilities to produce a CPP, and the effectiveness of nicotinic receptor antagonists in attenuating this preference was examined. Finally, nicotine CPPs were assessed in C57BL/6J and DBA/2J mice to examine the influence of strain in this design.

Results

Nicotine CPPs were seen in handled/environmentally habituated, but not in unhandled, ICR mice. Habituation to the injection techniques failed to strengthen the preference. In ICR mice, a CPP was seen with one intermediate dose of nicotine. This CPP was attenuated by mecamylamine and dihydro-β-erythroidine (DHβE). A nicotine CPP was also seen in C57BL/6J, but not in DBA/2J, mice.

Conclusion

Earlier handling experience and strain are important factors when evaluating a nicotine CPP in the mouse. In addition, certain nicotinic receptors underlie the nicotine CPP, indicating that this model can elucidate underlying mediators of nicotine reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkondon M, Pereira EF, Wonnacott S, Albuquerque EX (1992) Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol Pharmacol 41:802–808

    PubMed  CAS  Google Scholar 

  • Asanuma M, Ogawa N (1994) Pitfalls in assessment of c-fos mRNA expression in the brain: effects of animal handling. Rev Neurosci 5:171–178

    PubMed  CAS  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43

    Article  PubMed  CAS  Google Scholar 

  • Bechtholt AJ, Gremel CM, Cunningham CL (2004) Handling blocks expression of conditioned place aversion but not conditioned place preference produced by ethanol in mice. Pharmacol Biochem Behav 79:739–744

    Article  PubMed  CAS  Google Scholar 

  • Belluzzi JD, Lee AG, Oliff HS, Leslie FM (2004) Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology 174:389–395

    Article  PubMed  CAS  Google Scholar 

  • Berrendero F, Kieffer BL, Maldonado R (2002) Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci 22:10935–10940

    PubMed  CAS  Google Scholar 

  • Berrendero F, Mendizabal V, Robledo P, Galeote L, Bilkei-Gorzo A, Zimmer A, Maldonado R (2005) Nicotine-induced antinociception, rewarding effects, and physical dependence are decreased in mice lacking the preproenkephalin gene. J Neurosci 25:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Brower VG, Fu Y, Matta SG, Sharp BM (2002) Rat strain differences in nicotine self-administration using an unlimited access paradigm. Brain Res 930:12–20

    Article  PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Schechter MD (1994) Nicotine place preference using the biased method of conditioning. Prog Neuropsychopharmacol Biol Psychiatry 18:925–933

    Article  PubMed  CAS  Google Scholar 

  • Castañé A, Valjent E, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 43:857–867

    Article  PubMed  Google Scholar 

  • Clarke PB, Fibiger HC (1987) Apparent absence of nicotine-induced conditioned place preference in rats. Psychopharmacology 92:84–848

    Article  PubMed  CAS  Google Scholar 

  • Corrigall WA, Coen KM (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99:473–478

    Article  PubMed  CAS  Google Scholar 

  • Damaj MI, Welch SP, Martin BR (1995) In vivo pharmacological effects of dihydro-beta-erythroidine, a nicotinic antagonist, in mice. Psychopharmacology 117:67–73

    Article  PubMed  CAS  Google Scholar 

  • Fudala PJ, Teoh KW, Iwamoto ET (1985) Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacol Biochem Behav 22:237–241

    Article  PubMed  CAS  Google Scholar 

  • Grottick AJ, Trube G, Corrigall WA, Huwyler J, Malherbe P, Wyler R, Higgins GA (2000) Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. J Pharmacol Exp Ther 294:1112–1119

    PubMed  CAS  Google Scholar 

  • Henningfield JE, Goldberg SR (1983a) Nicotine as a reinforcer in human subjects and laboratory animals. Pharmacol Biochem Behav 19:989–992

    Article  PubMed  CAS  Google Scholar 

  • Henningfield JE, Goldberg SR (1983b) Control of behavior by intravenous nicotine injections in human subjects. Pharmacol Biochem Behav 19:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Horan B, Smith M, Gardner EL, Lepore M, Ashby CR Jr (1997) (–)–Nicotine produces conditioned place preference in Lewis, but not Fischer 344 rats. Synapse 26:93–94

    Article  PubMed  CAS  Google Scholar 

  • Jorenby DE, Steinpreis RE, Sherman JE, Baker TB (1990) Aversion instead of preference learning indicated by nicotine place conditioning in rats. Psychopharmacology 101:533–538

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, van der Kooy D (2003) The motivational valence of nicotine in the rat ventral tegmental is switched from rewarding to aversive following blockade of the a7-subunit-containing nicotinic acetylcholine receptor. Psychopharmacology 166:306–313

    PubMed  CAS  Google Scholar 

  • Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5:55–65

    Article  PubMed  CAS  Google Scholar 

  • Le Foll B, Goldberg SR (2005) Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology 178:481–492

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Paterson NE (2001) The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine Tob Res 3:361–373

    Article  PubMed  CAS  Google Scholar 

  • Martin JL, Itzhak Y (2000) 7-Nitroindazole blocks nicotine-induced conditioned place preference but not LiCl-induced conditioned place aversion. Neuroreport 11:947–949

    Article  PubMed  CAS  Google Scholar 

  • Mogg AJ, Whiteaker P, McIntosh JM, Marks M, Collins AC, Wonnacott S (2002) Methyllycaconitine is a potent antagonist of α-conotoxin-MII-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. J Pharmacol Exp Ther 302:197–204

    Article  PubMed  CAS  Google Scholar 

  • Mucha RF, van der Kooy D, O’Shaughnessy M, Bucenieks P (1982) Drug reinforcement studied by the use of place conditioning in rat. Brain Res 243:91–105

    Article  PubMed  CAS  Google Scholar 

  • Papke RL, Sanberg PR, Shytle RD (2001) Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J Pharmacol Exp Ther 297:646–656

    PubMed  CAS  Google Scholar 

  • Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology 104:255–259

    Article  PubMed  CAS  Google Scholar 

  • Parker LA (1992) Place conditioning in a three- or four-choice apparatus: Role of stimulus novelty in drug-induced place conditioning. Behavioral Neuroscience 106:294–306

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR (2003) Nicotine as a modulator of behavior: beyond the inverted U. Trends Pharmacol Sci 24:493–499

    Article  PubMed  CAS  Google Scholar 

  • Risinger FO, Oakes RA (1995) Nicotine-induced conditioned place preference and conditioned place aversion in mice. Pharmacol Biochem Behav 51:457–461

    Article  PubMed  CAS  Google Scholar 

  • Rogers DT, Barron, S, Littleton JM (2004) Neonatal ethanol exposure produces a hyperalgesia that extends into adolescence, and is associated with increased analgesic and rewarding properties of nicotine in rats. Psychopharmacology 171:204–211

    Article  PubMed  CAS  Google Scholar 

  • Ryabinin AE, Wang YM, Finn DA (1999) Different levels of Fos immunoreactivity after repeated handling and injection stress in two inbred strains of mice. Pharmacol Biochem Behav 63:143–151

    Article  PubMed  CAS  Google Scholar 

  • Schechter MD, Calcagnetti DJ (1993) Trends in place preference conditioning with a cross-indexed bibliography; 1957–1991. Neurosci Biobehav Rev 17:21–41

    Article  PubMed  CAS  Google Scholar 

  • Schechter MD, Calcagnetti DJ (1998) Continued trends in the conditioned place preference literature from 1992 to 1996, inclusive, with a cross-indexed bibliography. Neurosci Biobehav Rev 22:827–846

    Article  PubMed  CAS  Google Scholar 

  • Sharples CGV, Wonnacott S (2001) Neuronal nicotinic receptors. In: Manley S, Champness J (eds) Tocris Reviews 19. Tocris Cookson, Bristol, UK

    Google Scholar 

  • Shoaib M, Schindler CW, Goldberg SR (1997) Nicotine self-administration in rats: strain and nicotine pre-exposure effects on acquisition. Psychopharmacology 129:35–43

    Article  PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1982) Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Res 253:185–193

    Article  PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1983) Attenuation of heroin reward in rats by disruption of the mesolimbic dopamine system. Psychopharmacology 79:278–283

    Article  PubMed  CAS  Google Scholar 

  • Turek JW, Kang CH, Campbell JE, Arneric SP, Sullivan JP (1995) A sensitive technique for the detection of the alpha 7 neuronal nicotinic acetylcholine receptor antagonist, methyllycaconitine, in rat plasma and brain. J Neurosci Methods 61:113–118

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    Article  PubMed  CAS  Google Scholar 

  • Valverde O, Smadja C, Roques BP, Maldonado R (1997) The attenuation of morphine-conditioned place preference following chronic mild stress is reversed by a CCKB receptor antagonist. Psychopharmacology 131:79–85

    Article  PubMed  CAS  Google Scholar 

  • Vastola BJ, Douglas LA, Varlinskaya EI, Spear LP (2002) Nicotine-induced conditioned place preference in adolescent and adult rats. Physiol Behav 77:107–114

    Article  PubMed  CAS  Google Scholar 

  • Zarrindast MR, Faraji N, Rostami P, Sahraei H, Ghoshouni H (2003) Cross-tolerance between morphine- and nicotine-induced conditioned place preference in mice. Pharmacol Biochem Behav 74:363–369

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research was supported by NIDA DA-05274 and NIH DA-07027 and complied with the Guide for the Care and Use of Laboratory Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Imad Damaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabus, S.D., Martin, B.R., Brown, S.E. et al. Nicotine place preference in the mouse: influences of prior handling, dose and strain and attenuation by nicotinic receptor antagonists. Psychopharmacology 184, 456–463 (2006). https://doi.org/10.1007/s00213-006-0305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0305-7

Keywords

Navigation