Skip to main content

Advertisement

Log in

Today’s and tomorrow’s imaging and circulating biomarkers for pulmonary arterial hypertension

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The pathobiology of pulmonary arterial hypertension (PAH) involves a remodeling process in distal pulmonary arteries, as well as vasoconstriction and in situ thrombosis, leading to an increase in pulmonary vascular resistance, right heart failure and death. Its etiology may be idiopathic, but PAH is also frequently associated with underlying conditions such as connective tissue diseases. During the past decade, more than welcome novel therapies have been developed and are in development, including those increasingly targeting the remodeling process. These therapeutic options modestly increase the patients’ long-term survival, now approaching 60% at 5 years. However, non-invasive tools for confirming PAH diagnosis, and assessing disease severity and response to therapy, are tragically lacking and would help to select the best treatment. After exclusion of other causes of pulmonary hypertension, a final diagnosis still relies on right heart catheterization, an invasive technique which cannot be repeated as often as an optimal follow-up might require. Similarly, other techniques and biomarkers used for assessing disease severity and response to treatment generally lack specificity and have significant limitations. In this review, imaging as well as current and future circulating biomarkers for diagnosis, prognosis, and follow-up are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin or 5-hydroxytryptamine

BMP:

Bone morphogenetic protein

BMPRII:

BMP receptor 2

BNP:

Brain natriuretic peptide

cGMP:

Cyclic guanosine 3′5′-monophosphate

CT:

Computed tomography

CTEPH:

Chronic thromboembolic pulmonary hypertension

DCE:

Delayed contrast enhancement

Echo:

Echocardiography

EGF:

Epidermal growth factor

eNOS:

Endothelial nitric oxide synthase

ET-1/3:

Endothelin 1 or 3

FC:

Functional class

HDL-C:

High-density lipoprotein cholesterol

IL-6:

Interleukin 6

iPAH:

Idiopathic PAH

LIGHT:

Lymphotoxin-like inducible protein

LV:

Left ventricle

miR-X:

MicroRNA-X

miRNA:

Micro RNA

MP:

Microparticles

MRI:

Magnetic resonance imaging

NFAT:

Nuclear factor of activated T cells

NO:

Nitric oxide

NT-proBNP:

N-terminal pro-brain natriuretic peptide

OPN:

Osteopontin

PA:

Pulmonary arteries

PAAT:

Pulmonary artery acceleration time

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary arterial pressure

PASMC:

Pulmonary artery smooth muscle cell

PDE5:

Phosphodiesterase 5

PDGF:

Platelet-derived growth factor

PECAM:

Platelet endithelial cell adhesion molecule

PET:

Position emission tomography

PH:

Pulmonary hypertension

Pim1:

Proviral integration site for Moloney murine leukemia 1

PPAR:

Peroxisome proliferator activated receptor (gamma γ or alpha α)

Q:

Pefusion

RDW:

Red blood cell distribution width

RHC:

Right heart catheterization

ROS:

Reactive oxygen species

RV:

Right ventricle

RVH:

Right ventricle hypertrophy

SPECT:

Single photon emission computed tomography

SOD:

Superoxyde dismutase

STAT3:

Signal transducer and activator of transcription 3

TAPSE:

Tricuspid annular plane systolic excursion

TGFβ:

Tranforming growth factor beta

TXA2 :

Thromboxane A2

V:

Ventilation

vWF:

Plasma von Willebrand factor

WHO:

World Health Organization

References

  1. Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43(12 Suppl S):5S–12S. doi:10.1016/j.jacc.2004.02.037

  2. Voelkel NF, Tuder RM (1997) Cellular and molecular biology of vascular smooth muscle cells in pulmonary hypertension. Pulm Pharmacol Ther 10(5–6):231–241 pii: S1094-5539(98)90100-6

    Article  PubMed  CAS  Google Scholar 

  3. Rubin LJ (1997) Primary pulmonary hypertension. N Engl J Med 336(2):111–117. doi:10.1056/NEJM199701093360207

    Article  PubMed  CAS  Google Scholar 

  4. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349

    PubMed  Google Scholar 

  5. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54(1 Suppl):S43–54. doi:10.1016/j.jacc.2009.04.012

    Article  PubMed  Google Scholar 

  6. Humbert M, Nunes H, Sitbon O, Parent F, Herve P, Simonneau G (2001) Risk factors for pulmonary arterial hypertension. Clin Chest Med 22(3):459–475

    Article  PubMed  CAS  Google Scholar 

  7. Galie N, Torbicki A, Barst R, Dartevelle P, Haworth S, Higenbottam T, Olschewski H, Peacock A, Pietra G, Rubin LJ, Simonneau G (2005) Guidelines on diagnosis and treatment of pulmonary arterial hypertension. Rev Esp Cardiol 58(5):523–566

    Article  PubMed  Google Scholar 

  8. McLure LE, Peacock AJ (2007) Imaging of the heart in pulmonary hypertension. Int J Clin Pract Suppl 156:15–26. doi:10.1111/j.1742-1241.2007.01496.x

    Article  PubMed  Google Scholar 

  9. Provencher S, Jais X, Yaici A, Sitbon O, Humbert M, Simonneau G (2005) Clinical challenges in pulmonary hypertension: Roger S Mitchell lecture. Chest 128(6 Suppl):622S–628S. doi:10.1378/chest.128.6_suppl.622S-a

    Article  PubMed  Google Scholar 

  10. Sitbon O, Humbert M, Simonneau G (2002) Primary pulmonary hypertension: current therapy. Prog Cardiovasc Dis 45(2):115–128 pii: S0033062002500384

    Article  PubMed  CAS  Google Scholar 

  11. McLaughlin VV, Rich S (2004) Pulmonary hypertension. Curr Probl Cardiol 29(10):575–634. doi:10.1016/j.cpcardiol.2004.04.001

    Article  PubMed  Google Scholar 

  12. McLaughlin VV (2002) Medical management of primary pulmonary hypertension. Expert Opin Pharmacother 3(2):159–165. doi:10.1517/14656566.3.2.159

    Article  PubMed  Google Scholar 

  13. Hoeper MM, Markevych I, Spiekerkoetter E, Welte T, Niedermeyer J (2005) Goal-oriented treatment and combination therapy for pulmonary arterial hypertension. Eur Respir J 26(5):858–863. doi:10.1183/09031936.05.00075305

    Article  PubMed  CAS  Google Scholar 

  14. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. doi:10.1084/jem.20101812

    PubMed  Google Scholar 

  15. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104(27):11418–11423. doi:10.1073/pnas.0610467104

    Article  PubMed  CAS  Google Scholar 

  16. Rehman J, Archer SL (2010) A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension. Adv Exp Med Biol 661:171–185. doi:10.1007/978-1-60761-500-2_11

    Google Scholar 

  17. Zaidi SH, You XM, Ciura S, Husain M, Rabinovitch M (2002) Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105(4):516–521

    Article  PubMed  CAS  Google Scholar 

  18. Archer S, Rich S (2000) Primary pulmonary hypertension: a vascular biology and translational research “Work in progress”. Circulation 102(22):2781–2791

    Article  PubMed  CAS  Google Scholar 

  19. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208 (3):535–548. doi:10.1084/jem.20101812

    Google Scholar 

  20. Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, Cote J, Provencher S, Sussman MA, Bonnet S (2011) Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation 123 (11):1205–1215. doi:10.1161/CIRCULATIONAHA.110.963314

    Google Scholar 

  21. Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N, Sheares KK, Trembath RC (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation 104(7):790–795

    Article  PubMed  CAS  Google Scholar 

  22. Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, Sheikh AY, Suen RS, Stewart DJ, Rabinovitch M (2007) Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation 115(10):1275–1284. doi:10.1161/CIRCULATIONAHA.106.663120

    PubMed  CAS  Google Scholar 

  23. Hansmann G, de Jesus Perez VA, Alastalo TP, Alvira CM, Guignabert C, Bekker JM, Schellong S, Urashima T, Wang L, Morrell NW, Rabinovitch M (2008) An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest 118 (5):1846–1857. doi:10.1172/JCI32503

    Google Scholar 

  24. Rabinovitch M (2010) PPARgamma and the pathobiology of pulmonary arterial hypertension. Adv Exp Med Biol 661:447–458. doi:10.1007/978-1-60761-500-2_29

    Google Scholar 

  25. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618. doi:10.1038/nm1582

    Article  PubMed  CAS  Google Scholar 

  26. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424. doi:10.1161/01.RES.0000257913.42552.23

    Article  PubMed  CAS  Google Scholar 

  27. Rafanan AL, Golish JA, Dinner DS, Hague LK, Arroliga AC (2001) Nocturnal hypoxemia is common in primary pulmonary hypertension. Chest 120(3):894–899

    Article  PubMed  CAS  Google Scholar 

  28. Spiekerkoetter E, Fabel H, Hoeper MM (2002) Effects of inhaled salbutamol in primary pulmonary hypertension. Eur Respir J 20(3):524–528

    Article  PubMed  CAS  Google Scholar 

  29. Sun XG, Hansen JE, Oudiz RJ, Wasserman K (2003) Pulmonary function in primary pulmonary hypertension. J Am Coll Cardiol 41(6):1028–1035 pii: S0735109702029649

    Article  PubMed  Google Scholar 

  30. Sun XG, Hansen JE, Oudiz RJ, Wasserman K (2001) Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 104(4):429–435

    Article  PubMed  CAS  Google Scholar 

  31. Taichman DB, McGoon MD, Harhay MO, Archer-Chicko C, Sager JS, Murugappan M, Chakinali MM, Palevsky HI, Gallop R (2009) Wide variation in clinicians’ assessment of New York Heart Association/World Health Organization functional class in patients with pulmonary arterial hypertension. Mayo Clin Proc 84(7):586–592. doi:10.4065/84.7.586

    PubMed  Google Scholar 

  32. Rhodes J, Barst RJ, Garofano RP, Thoele DG, Gersony WM (1991) Hemodynamic correlates of exercise function in patients with primary pulmonary hypertension. J Am Coll Cardiol 18(7):1738–1744 pii: 0735-1097(91)90513-9

    Article  PubMed  CAS  Google Scholar 

  33. Wensel R, Opitz CF, Anker SD, Winkler J, Hoffken G, Kleber FX, Sharma R, Hummel M, Hetzer R, Ewert R (2002) Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation 106(3):319–324

    Article  PubMed  Google Scholar 

  34. Groepenhoff H, Vonk-Noordegraaf A, Boonstra A, Spreeuwenberg MD, Postmus PE, Bogaard HJ (2008) Exercise testing to estimate survival in pulmonary hypertension. Med Sci Sports Exerc 40(10):1725–1732. doi:10.1249/MSS.0b013e31817c92c0

    Article  PubMed  Google Scholar 

  35. Miyamoto S, Nagaya N, Satoh T, Kyotani S, Sakamaki F, Fujita M, Nakanishi N, Miyatake K (2000) Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med 161(2 Pt 1):487–492

    Google Scholar 

  36. Provencher S, Chemla D, Herve P, Sitbon O, Humbert M, Simonneau G (2006) Heart rate responses during the 6-minute walk test in pulmonary arterial hypertension. Eur Respir J 27(1):114–120. doi:10.1183/09031936.06.00042705

    Article  PubMed  CAS  Google Scholar 

  37. Lee WT, Peacock AJ, Johnson MK The role of per cent predicted 6-min walk distance in pulmonary arterial hypertension. Eur Respir J 36(6):1294–1301. doi:10.1183/09031936.00155009

  38. Hoeper MM, Oudiz RJ, Peacock A, Tapson VF, Haworth SG, Frost AE, Torbicki A (2004) End points and clinical trial designs in pulmonary arterial hypertension: clinical and regulatory perspectives. J Am Coll Cardiol 43(12 Suppl S):48S–55S. doi:10.1016/j.jacc.2004.02.010

    Google Scholar 

  39. Farber HW, Foreman AJ, Miller DP, McGoon MD REVEAL Registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congest Heart Fail 17(2):56–64. doi:10.1111/j.1751-7133.2010.00202.x

  40. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 34(6):1219–1263. doi:10.1183/09031936.00139009

    Article  PubMed  CAS  Google Scholar 

  41. Budev MM, Arroliga AC, Jennings CA (2003) Diagnosis and evaluation of pulmonary hypertension. Cleve Clin J Med 70(Suppl 1):S9–17

    Article  PubMed  Google Scholar 

  42. Hoeper MM, Lee SH, Voswinckel R, Palazzini M, Jais X, Marinelli A, Barst RJ, Ghofrani HA, Jing ZC, Opitz C, Seyfarth HJ, Halank M, McLaughlin V, Oudiz RJ, Ewert R, Wilkens H, Kluge S, Bremer HC, Baroke E, Rubin LJ (2006) Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 48(12):2546–2552. doi:10.1016/j.jacc.2006.07.061

    Article  PubMed  Google Scholar 

  43. McGoon M, Gutterman D, Steen V, Barst R, McCrory DC, Fortin TA, Loyd JE (2004) Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 126(1 Suppl):14S–34S. doi:10.1378/chest.126.1_suppl.14S

    Article  PubMed  Google Scholar 

  44. Mahapatra S, Nishimura RA, Sorajja P, Cha S, McGoon MD (2006) Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 47(4):799–803. doi:10.1016/j.jacc.2005.09.054

    Article  PubMed  Google Scholar 

  45. Schannwell CM, Steiner S, Strauer BE (2007) Diagnostics in pulmonary hypertension. J Physiol Pharmacol 58 Suppl 5(Pt 2):591–602

    Google Scholar 

  46. Benza R, Biederman R, Murali S, Gupta H (2008) Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension. J Am Coll Cardiol 52(21):1683–1692. doi:10.1016/j.jacc.2008.08.033

    Article  PubMed  Google Scholar 

  47. Ramani GV, Gurm G, Dilsizian V, Park MH Noninvasive assessment of right ventricular function: will there be resurgence in radionuclide imaging techniques? Curr Cardiol Rep 12(2):162–169. doi:10.1007/s11886-010-0092-y

  48. Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Boisblanc B, Schwartz T, Koch G, Clayton LM, Jobsis MM, Crow JW, Long W (2002) Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 39(7):1214–1219

    Article  PubMed  Google Scholar 

  49. Eysmann SB, Palevsky HI, Reichek N, Hackney K, Douglas PS (1989) Two-dimensional and Doppler-echocardiographic and cardiac catheterization correlates of survival in primary pulmonary hypertension. Circulation 80(2):353–360

    Article  PubMed  CAS  Google Scholar 

  50. Abraham J, Abraham TP (2009) The role of echocardiography in hemodynamic assessment in heart failure. Heart Fail Clin 5(2):191–208. doi:10.1016/j.hfc.2008.11.002

    Article  PubMed  Google Scholar 

  51. Filusch A, Mereles D, Gruenig E, Buss S, Katus HA, Meyer FJ (2010) Strain and strain rate echocardiography for evaluation of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Clin Res Cardiol 99(8):491–498. doi:10.1007/s00392-010-0147-5

    Google Scholar 

  52. Kovacs G, Reiter G, Reiter U, Rienmuller R, Peacock A, Olschewski H (2008) The emerging role of magnetic resonance imaging in the diagnosis and management of pulmonary hypertension. Respiration 76(4):458–470. doi:10.1159/000158548

    Article  PubMed  Google Scholar 

  53. Karatasakis GT, Karagounis LA, Kalyvas PA, Manginas A, Athanassopoulos GD, Aggelakas SA, Cokkinos DV (1998) Prognostic significance of echocardiographically estimated right ventricular shortening in advanced heart failure. Am J Cardiol 82(3):329–334

    Article  PubMed  CAS  Google Scholar 

  54. Ghio S, Recusani F, Klersy C, Sebastiani R, Laudisa ML, Campana C, Gavazzi A, Tavazzi L (2000) Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 85(7):837–842

    Article  PubMed  CAS  Google Scholar 

  55. Samad BA, Alam M, Jensen-Urstad K (2002) Prognostic impact of right ventricular involvement as assessed by tricuspid annular motion in patients with acute myocardial infarction. Am J Cardiol 90(7):778–781

    Article  PubMed  Google Scholar 

  56. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamera E, Corretti MC, Champion HC, Abraham TP, Girgis RE, Hassoun PM (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174(9):1034–1041. doi:10.1164/rccm.200604-547OC

    Article  PubMed  Google Scholar 

  57. McLaughlin VV, Presberg KW, Doyle RL, Abman SH, McCrory DC, Fortin T, Ahearn G (2004) Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 126(1 Suppl):78S–92S. doi:10.1378/chest.126.1_suppl.78S

    Article  PubMed  Google Scholar 

  58. Hinderliter AL, Willis PWt, Barst RJ, Rich S, Rubin LJ, Badesch DB, Groves BM, McGoon MD, Tapson VF, Bourge RC, Brundage BH, Koerner SK, Langleben D, Keller CA, Murali S, Uretsky BF, Koch G, Li S, Clayton LM, Jobsis MM, Blackburn SD Jr., Crow JW, Long WA (1997) Effects of long-term infusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Primary Pulmonary Hypertension Study Group. Circulation 95(6):1479–1486

  59. Grunig E, Weissmann S, Ehlken N, Fijalkowska A, Fischer C, Fourme T, Galie N, Ghofrani A, Harrison RE, Huez S, Humbert M, Janssen B, Kober J, Koehler R, Machado RD, Mereles D, Naeije R, Olschewski H, Provencher S, Reichenberger F, Retailleau K, Rocchi G, Simonneau G, Torbicki A, Trembath R, Seeger W (2009) Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation 119(13):1747–1757. doi:10.1161/CIRCULATIONAHA.108.800938

    Article  PubMed  CAS  Google Scholar 

  60. Hachulla E, Gressin V, Guillevin L, Carpentier P, Diot E, Sibilia J, Kahan A, Cabane J, Frances C, Launay D, Mouthon L, Allanore Y, Tiev KP, Clerson P, de Groote P, Humbert M (2005) Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum 52(12):3792–3800. doi:10.1002/art.21433

    Article  PubMed  Google Scholar 

  61. Sitbon O, Lascoux-Combe C, Delfraissy JF, Yeni PG, Raffi F, De Zuttere D, Gressin V, Clerson P, Sereni D, Simonneau G (2008) Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med 177(1):108–113. doi:10.1164/rccm.200704-541OC

    Article  PubMed  Google Scholar 

  62. Vitarelli A, Conde Y, Cimino E, Stellato S, D’Orazio S, D’Angeli I, Nguyen BL, Padella V, Caranci F, Petroianni A, D’Antoni L, Terzano C (2006) Assessment of right ventricular function by strain rate imaging in chronic obstructive pulmonary disease. Eur Respir J 27(2):268–275. doi:10.1183/09031936.06.00072005

    Article  PubMed  CAS  Google Scholar 

  63. Gopal AS, Chukwu EO, Mihalatos DG, Katz AS, Mathew ST, Lachmann JS, Toole RS, Schapiro W, Reichek N (2007) Left ventricular structure and function for postmyocardial infarction and heart failure risk stratification by three-dimensional echocardiography. J Am Soc Echocardiogr 20(8):949–958. doi:10.1016/j.echo.2007.01.014

    Article  PubMed  Google Scholar 

  64. Grapsa J, Gibbs JS, Cabrita IZ, Watson GF, Pavlopoulos H, Dawson D, Gin-Sing W, Howard LS, Nihoyannopoulos P (2012) The association of clinical outcome with right atrial and ventricular remodelling in patients with pulmonary arterial hypertension: study with real-time three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging

  65. Apfel HD, Shen Z, Gopal AS, Vangi V, Solowiejczyk D, Altmann K, Barst RJ, Boxt LM, Allan LD, King DL (1996) Quantitative three dimensional echocardiography in patients with pulmonary hypertension and compressed left ventricles: comparison with cross sectional echocardiography and magnetic resonance imaging. Heart 76(4):350–354

    Article  PubMed  CAS  Google Scholar 

  66. Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Hsiao JF, Maalouf JF, Ammash NM, McCully RB, Miller FA, Pellikka PA, Oh JK, Kane GC (2011) Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 139(6):1299–1309

    Google Scholar 

  67. Borges AC, Knebel F, Eddicks S, Panda A, Schattke S, Witt C, Baumann G (2006) Right ventricular function assessed by two-dimensional strain and tissue Doppler echocardiography in patients with pulmonary arterial hypertension and effect of vasodilator therapy. Am J Cardiol 98(4):530–534. doi:10.1016/j.amjcard.2006.02.060

    Article  PubMed  CAS  Google Scholar 

  68. Suga K, Tokuda O, Okada M, Koike M, Iwanaga H, Matsunaga N (2010) Assessment of cross-sectional lung ventilation-perfusion imbalance in primary and passive pulmonary hypertension with automated V/Q SPECT. Nucl Med Commun 31(7):673–681. doi:10.1097/MNM.0b013e328339ea9b

    Google Scholar 

  69. Mehta S, Helmersen D, Provencher S, Hirani N, Rubens FD, De Perrot M, Blostein M, Boutet K, Chandy G, Dennie C, Granton J, Hernandez P, Hirsch AM, Laframboise K, Levy RD, Lien D, Martel S, Shoemaker G, Swiston J, Weinkauf J (2010) Diagnostic evaluation and management of chronic thromboembolic pulmonary hypertension: a clinical practice guideline. Can Respir J 17(6):301–334

    Google Scholar 

  70. Wong YY, Raijmakers PG, Knaapen P, Lubberink M, Ruiter G, Marcus JT, Boonstra A, Lammertsma AA, Westerhof N, van der Laarse WJ, Vonk-Noordegraaf (2011) A Supine-exercise-induced oxygen supply to the right myocardium is attenuated in patients with severe idiopathic pulmonary arterial hypertension. Heart 97(24):2069–2074. doi:10.1136/heartjnl-2011-300237

  71. Abikhzer Y, Probst S, Rush C (2008) Pulmonary hypertension findings detected by F-18 FDG PET scan. Clin Nucl Med 33(6):405–406. doi:10.1097/RLU.0b013e31817082ad

    Article  PubMed  Google Scholar 

  72. Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, Thenappan T, Bache-Wiig P, Piao L, Paul J, Chen CT, Archer SL (2012) Lung 18F-fluorodeoxyglucose PET for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. doi:10.1164/rccm.201108-1562OC

  73. Jakobsen S, Kodahl GM, Olsen AK, Cumming P (2006) Synthesis, radiolabeling and in vivo evaluation of [11C]RAL-01, a potential phosphodiesterase 5 radioligand. Nucl Med Biol 33(5):593–597. doi:10.1016/j.nucmedbio.2006.04.006

    Article  PubMed  CAS  Google Scholar 

  74. Lewis GD, Semigran MJ (2004) Type 5 phosphodiesterase inhibition in heart failure and pulmonary hypertension. Curr Heart Fail Rep 1(4):183–189

    Article  PubMed  Google Scholar 

  75. 4-[18F]Fluorobenzoyl-endothelin-1 (2004). NBK23311 [bookaccession]

  76. He Q, Xu RZ, Shkarin P, Pizzorno G, Lee-French CH, Rothman DL, Shungu DC, Shim H (2003) Magnetic resonance spectroscopic imaging of tumor metabolic markers for cancer diagnosis, metabolic phenotyping, and characterization of tumor microenvironment. Dis Markers 19(2–3):69–94

    PubMed  CAS  Google Scholar 

  77. Grosse C, Grosse A (2010) CT findings in diseases associated with pulmonary hypertension: a current review. Radiographics 30(7):1753–1777. doi:10.1148/rg.307105710

    Google Scholar 

  78. Devaraj A, Wells AU, Meister MG, Corte TJ, Wort SJ, Hansell DM (2010) Detection of pulmonary hypertension with multidetector CT and echocardiography alone and in combination. Radiology 254(2):609–616. doi:10.1148/radiol.09090548

    Google Scholar 

  79. Sanchez O, Revel MP, Couchon S, Meyer G (2007) Imaging of pulmonary arterial hypertension. Rev Mal Respir 24(2):155–169 pii:MDOI-RMR-02-2007-24-2-0761-8425-101019-200520005

    Article  PubMed  CAS  Google Scholar 

  80. Boerrigter B, Mauritz GJ, Marcus JT, Helderman F, Postmus PE, Westerhof N, Vonk-Noordegraaf A (2010) Progressive dilatation of the main pulmonary artery is a characteristic of pulmonary arterial hypertension and is not related to changes in pressure. Chest 138(6):1395–1401. doi:10.1378/chest.10-0363

    Google Scholar 

  81. Nicol ED, Kafka H, Stirrup J, Padley SP, Rubens MB, Kilner PJ, Gatzoulis MA (2009) A single, comprehensive non-invasive cardiovascular assessment in pulmonary arterial hypertension: combined computed tomography pulmonary and coronary angiography. Int J Cardiol 136(3):278–288. doi:10.1016/j.ijcard.2008.05.049

    Article  PubMed  Google Scholar 

  82. Revel MP, Faivre JB, Remy-Jardin M, Delannoy-Deken V, Duhamel A, Remy J (2009) Pulmonary hypertension: ECG-gated 64-section CT angiographic evaluation of new functional parameters as diagnostic criteria. Radiology 250(2):558–566. doi:10.1148/radiol.2502080315

    Article  PubMed  Google Scholar 

  83. Matsuoka S, Washko GR, Dransfield MT, Yamashiro T, San Jose Estepar R, Diaz A, Silverman EK, Patz S, Hatabu H (2010) Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad Radiol 17(1):93–99. doi:10.1016/j.acra.2009.07.022

    Google Scholar 

  84. Tan RT, Kuzo R, Goodman LR, Siegel R, Haasler GB, Presberg KW (1998) Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Medical College of Wisconsin Lung Transplant Group. Chest 113(5):1250–1256

    Article  PubMed  CAS  Google Scholar 

  85. d’Agostino AG, Remy-Jardin M, Khalil C, Delannoy-Deken V, Flohr T, Duhamel A, Remy J (2006) Low-dose ECG-gated 64-slices helical CT angiography of the chest: evaluation of image quality in 105 patients. Eur Radiol 16(10):2137–2146. doi:10.1007/s00330-006-0218-1

    Article  PubMed  Google Scholar 

  86. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, Fink C, Weckbach S, Lenhard M, Schmidt B, Flohr T, Reiser MF, Becker CR (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517. doi:10.1007/s00330-006-0517-6

    Article  PubMed  Google Scholar 

  87. Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TR (2008) Dual energy CT for the assessment of lung perfusion–correlation to scintigraphy. Eur J Radiol 68(3):369–374. doi:10.1016/j.ejrad.2008.07.031

    Article  PubMed  Google Scholar 

  88. Ley S, Kreitner KF, Fink C, Heussel CP, Borst MM, Kauczor HU (2004) Assessment of pulmonary hypertension by CT and MR imaging. Eur Radiol 14(3):359–368. doi:10.1007/s00330-003-2208-x

    Article  PubMed  Google Scholar 

  89. McLaughlin VV, Badesch DB, Delcroix M, Fleming TR, Gaine SP, Galie N, Gibbs JS, Kim NH, Oudiz RJ, Peacock A, Provencher S, Sitbon O, Tapson VF, Seeger W (2009) End points and clinical trial design in pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl):S97–107. doi:10.1016/j.jacc.2009.04.007

    Article  PubMed  Google Scholar 

  90. McLure LE, Peacock AJ (2009) Cardiac magnetic resonance imaging for the assessment of the heart and pulmonary circulation in pulmonary hypertension. Eur Respir J 33(6):1454–1466. doi:10.1183/09031936.00139907

    Article  PubMed  CAS  Google Scholar 

  91. Boxt LM, Katz J, Kolb T, Czegledy FP, Barst RJ (1992) Direct quantitation of right and left ventricular volumes with nuclear magnetic resonance imaging in patients with primary pulmonary hypertension. J Am Coll Cardiol 19(7):1508–1515 pii: 0735-1097(92)90611-P

    Article  PubMed  CAS  Google Scholar 

  92. Doherty NE 3rd, Fujita N, Caputo GR, Higgins CB (1992) Measurement of right ventricular mass in normal and dilated cardiomyopathic ventricles using cine magnetic resonance imaging. Am J Cardiol 69(14):1223–1228

    Article  PubMed  Google Scholar 

  93. Katz J, Whang J, Boxt LM, Barst RJ (1993) Estimation of right ventricular mass in normal subjects and in patients with primary pulmonary hypertension by nuclear magnetic resonance imaging. J Am Coll Cardiol 21(6):1475–1481 pii: 0735-1097(93)90327-W

    Article  PubMed  CAS  Google Scholar 

  94. Pattynama PM, Willems LN, Smit AH, van der Wall EE, de Roos A (1992) Early diagnosis of cor pulmonale with MR imaging of the right ventricle. Radiology 182(2):375–379

    PubMed  CAS  Google Scholar 

  95. Suzuki J, Caputo GR, Masui T, Chang JM, O’Sullivan M, Higgins CB (1991) Assessment of right ventricular diastolic and systolic function in patients with dilated cardiomyopathy using cine magnetic resonance imaging. Am Heart J 122(4 Pt 1):1035–1040

    Article  PubMed  CAS  Google Scholar 

  96. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28(10):1250–1257. doi:10.1093/eurheartj/ehl477

    Article  PubMed  Google Scholar 

  97. Tulevski II, Lee PL, Groenink M, van der Wall EE, Stoker J, Pieper PG, Romkes H, Hirsch A, Mulder BJ (2000) Dobutamine-induced increase of right ventricular contractility without increased stroke volume in adolescent patients with transposition of the great arteries: evaluation with magnetic resonance imaging. Int J Card Imaging 16(6):471–478

    Article  PubMed  CAS  Google Scholar 

  98. Holverda S, Gan CT, Marcus JT, Postmus PE, Boonstra A, Vonk-Noordegraaf A (2006) Impaired stroke volume response to exercise in pulmonary arterial hypertension. J Am Coll Cardiol 47(8):1732–1733. doi:10.1016/j.jacc.2006.01.048

    Article  PubMed  Google Scholar 

  99. Hachulla AL, Launay D, Gaxotte V, de Groote P, Lamblin N, Devos P, Hatron PY, Beregi JP, Hachulla E (2009) Cardiac magnetic resonance imaging in systemic sclerosis: a cross-sectional observational study of 52 patients. Ann Rheum Dis 68(12):1878–1884. doi:10.1136/ard.2008.095836

    Article  PubMed  Google Scholar 

  100. Blyth KG, Groenning BA, Martin TN, Foster JE, Mark PB, Dargie HJ, Peacock AJ (2005) Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J 26(19):1993–1999. doi:10.1093/eurheartj/ehi328

    Article  PubMed  Google Scholar 

  101. Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132(6):1906–1912. doi:10.1378/chest.07-1246

    Article  PubMed  Google Scholar 

  102. Jardim C, Rochitte CE, Humbert M, Rubenfeld G, Jasinowodolinski D, Carvalho CR, Souza R (2007) Pulmonary artery distensibility in pulmonary arterial hypertension: an MRI pilot study. Eur Respir J 29(3):476–481. doi:10.1183/09031936.00016806

    Article  PubMed  CAS  Google Scholar 

  103. Bergin CJ, Hauschildt J, Rios G, Belezzuoli EV, Huynh T, Channick RN (1997) Accuracy of MR angiography compared with radionuclide scanning in identifying the cause of pulmonary arterial hypertension. Am J Roentgenol 168(6):1549–1555

    CAS  Google Scholar 

  104. Nikolaou K, Schoenberg SO, Attenberger U, Scheidler J, Dietrich O, Kuehn B, Rosa F, Huber A, Leuchte H, Baumgartner R, Behr J, Reiser MF (2005) Pulmonary arterial hypertension: diagnosis with fast perfusion MR imaging and high-spatial-resolution MR angiography-preliminary experience. Radiology 236(2):694–703. doi:10.1148/radiol.2361040502

    Article  PubMed  Google Scholar 

  105. Kuehne T, Yilmaz S, Steendijk P, Moore P, Groenink M, Saaed M, Weber O, Higgins CB, Ewert P, Fleck E, Nagel E, Schulze-Neick I, Lange P (2004) Magnetic resonance imaging analysis of right ventricular pressure-volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation 110(14):2010–2016. doi:10.1161/01.CIR.0000143138.02493.DD

    Article  PubMed  Google Scholar 

  106. Wong YY, Ruiter G, Lubberink M, Raijmakers PG, Knaapen P, Marcus JT, Boonstra A, Lammertsma AA, Westerhof N, van der Laarse WJ, Vonk-Noordegraaf A (2011) Right ventricular failure in idiopathic pulmonary arterial hypertension is associated with inefficient myocardial oxygen utilization. Circ Heart Fail 4(6):700–706. doi:10.1161/CIRCHEARTFAILURE.111.962381

    Google Scholar 

  107. Ohno Y, Koyama H, Nogami M, Takenaka D, Matsumoto S, Onishi Y, Matsumoto K, Murase K, Sugimura K (2008) Dynamic perfusion MRI: capability for evaluation of disease severity and progression of pulmonary arterial hypertension in patients with connective tissue disease. J Magn Reson Imaging 28(4):887–899. doi:10.1002/jmri.21550

    Article  PubMed  Google Scholar 

  108. Ohno Y, Hatabu H, Murase K, Higashino T, Nogami M, Yoshikawa T, Sugimura K (2007) Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. Am J Roentgenol 188(1):48–56. doi:10.2214/AJR.05.0135

    Article  Google Scholar 

  109. Okajima Y, Ohno Y, Washko GR, Hatabu H (2011) Assessment of pulmonary hypertension what CT and MRI can provide. Acad Radiol 18(4):437–453. doi:10.1016/j.acra.2011.01.003

    Google Scholar 

  110. Kondo C, Caputo GR, Masui T, Foster E, O’Sullivan M, Stulbarg MS, Golden J, Catterjee K, Higgins CB (1992) Pulmonary hypertension: pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology 183(3):751–758

    PubMed  CAS  Google Scholar 

  111. Roeleveld RJ, Marcus JT, Boonstra A, Postmus PE, Marques KM, Bronzwaer JG, Vonk-Noordegraaf A (2005) A comparison of noninvasive MRI-based methods of estimating pulmonary artery pressure in pulmonary hypertension. J Magn Reson Imaging 22(1):67–72. doi:10.1002/jmri.20338

    Article  PubMed  Google Scholar 

  112. Roeleveld RJ, Vonk-Noordegraaf A, Marcus JT, Bronzwaer JG, Marques KM, Postmus PE, Boonstra A (2004) Effects of epoprostenol on right ventricular hypertrophy and dilatation in pulmonary hypertension. Chest 125(2):572–579

    Article  PubMed  CAS  Google Scholar 

  113. Chin KM, Kingman M, de Lemos JA, Warner JJ, Reimold S, Peshock R, Torres F (2008) Changes in right ventricular structure and function assessed using cardiac magnetic resonance imaging in bosentan-treated patients with pulmonary arterial hypertension. Am J Cardiol 101(11):1669–1672. doi:10.1016/j.amjcard.2008.01.055

    Article  PubMed  Google Scholar 

  114. Michelakis ED, Tymchak W, Noga M, Webster L, Wu XC, Lien D, Wang SH, Modry D, Archer SL (2003) Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation 108(17):2066–2069. doi:10.1161/01.CIR.0000099502.17776.C2

    Article  PubMed  CAS  Google Scholar 

  115. Enders J, Zimmermann E, Rief M, Martus P, Klingebiel R, Asbach P, Klessen C, Diederichs G, Bengner T, Teichgraber U, Hamm B, Dewey M (2011) Reduction of claustrophobia during magnetic resonance imaging: methods and design of the “CLAUSTRO” randomized controlled trial. BMC Med Imaging 11:4. doi:10.1186/1471-2342-11-4

  116. Kuijpers D, van Dijkman PR, Janssen CH, Vliegenthart R, Zijlstra F, Oudkerk M (2004) Dobutamine stress MRI. Part II. Risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14(11):2046–2052. doi:10.1007/s00330-004-2426-x

    Google Scholar 

  117. Gan CT, McCann GP, Marcus JT, van Wolferen SA, Twisk JW, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2006) NT-proBNP reflects right ventricular structure and function in pulmonary hypertension. Eur Respir J 28(6):1190–1194. doi:10.1183/09031936.00016006

    Article  PubMed  CAS  Google Scholar 

  118. Tsutamoto T, Wada A, Maeda K, Hisanaga T, Maeda Y, Fukai D, Ohnishi M, Sugimoto Y, Kinoshita M (1997) Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation 96(2):509–516

    Article  PubMed  CAS  Google Scholar 

  119. Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Kakishita M, Fukushima K, Okano Y, Nakanishi N, Miyatake K, Kangawa K (2000) Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 102(8):865–870

    Article  PubMed  CAS  Google Scholar 

  120. Nagaya N, Ando M, Oya H, Ohkita Y, Kyotani S, Sakamaki F, Nakanishi N (2002) Plasma brain natriuretic peptide as a noninvasive marker for efficacy of pulmonary thromboendarterectomy. Ann Thorac Surg 74(1):180–184 (discussion 184)

    Google Scholar 

  121. Blyth KG, Groenning BA, Mark PB, Martin TN, Foster JE, Steedman T, Morton JJ, Dargie HJ, Peacock AJ (2007) NT-proBNP can be used to detect right ventricular systolic dysfunction in pulmonary hypertension. Eur Respir J 29(4):737–744. doi:10.1183/09031936.00095606

    Article  PubMed  CAS  Google Scholar 

  122. Fijalkowska A, Kurzyna M, Torbicki A, Szewczyk G, Florczyk M, Pruszczyk P, Szturmowicz M (2006) Serum N-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest 129(5):1313–1321. doi:10.1378/chest.129.5.1313

    Article  PubMed  CAS  Google Scholar 

  123. Andreassen AK, Wergeland R, Simonsen S, Geiran O, Guevara C, Ueland T (2006) N-terminal pro-B-type natriuretic peptide as an indicator of disease severity in a heterogeneous group of patients with chronic precapillary pulmonary hypertension. Am J Cardiol 98(4):525–529. doi:10.1016/j.amjcard.2006.02.061

    Article  PubMed  CAS  Google Scholar 

  124. Giannakoulas G, Dimopoulos K, Bolger AP, Tay EL, Inuzuka R, Bedard E, Davos C, Swan L, Gatzoulis MA (2010) Usefulness of natriuretic Peptide levels to predict mortality in adults with congenital heart disease. Am J Cardiol 105(6):869–873. doi:10.1016/j.amjcard.2009.11.041

    Google Scholar 

  125. Lang CC, Coutie WJ, Struthers AD, Dhillon DP, Winter JH, Lipworth BJ (1992) Elevated levels of brain natriuretic peptide in acute hypoxaemic chronic obstructive pulmonary disease. Clin Sci (Lond) 83(5):529–533

    CAS  Google Scholar 

  126. Shah SJ, Thenappan T, Rich S, Tian L, Archer SL, Gomberg-Maitland M (2008) Association of serum creatinine with abnormal hemodynamics and mortality in pulmonary arterial hypertension. Circulation 117(19):2475–2483. doi:10.1161/CIRCULATIONAHA.107.719500

    Article  PubMed  CAS  Google Scholar 

  127. Torbicki A, Kurzyna M, Kuca P, Fijalkowska A, Sikora J, Florczyk M, Pruszczyk P, Burakowski J, Wawrzynska L (2003) Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation 108(7):844–848. doi:10.1161/01.CIR.0000084544.54513.E2

    Article  PubMed  CAS  Google Scholar 

  128. Sitbon O, Humbert M, Nunes H, Parent F, Garcia G, Herve P, Rainisio M, Simonneau G (2002) Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol 40(4):780–788 pii: 0735109702020120

    Article  PubMed  CAS  Google Scholar 

  129. La Vecchia L, Mezzena G, Zanolla L, Paccanaro M, Varotto L, Bonanno C, Ometto R (2000) Cardiac troponin I as diagnostic and prognostic marker in severe heart failure. J Heart Lung Transplant 19(7):644–652 pii: S1053-2498(00)00120-0

    Article  PubMed  Google Scholar 

  130. Sato Y, Yamada T, Taniguchi R, Kataoka K, Sasayama S, Matsumori A, Takatsu Y (1998) Serum concentration of cardiac troponin T in patients with cardiomyopathy: a possible mechanism of acute heart failure. Heart 80(2):209–210

    PubMed  CAS  Google Scholar 

  131. Lorenzen JM, Nickel N, Kramer R, Golpon H, Westerkamp V, Olsson KM, Haller H, Hoeper MM (2011) Osteopontin in patients with idiopathic pulmonary hypertension. Chest 139(5):1010-1017. doi:10.1378/chest.10-1146

    Google Scholar 

  132. McDonald LJ, Murad F (1996) Nitric oxide and cyclic GMP signaling. Proc Soc Exp Biol Med 211(1):1–6

    PubMed  CAS  Google Scholar 

  133. Bogdan M, Humbert M, Francoual J, Claise C, Duroux P, Simonneau G, Lindenbaum A (1998) Urinary cGMP concentrations in severe primary pulmonary hypertension. Thorax 53(12):1059–1062

    Article  PubMed  CAS  Google Scholar 

  134. Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333(4):214–221. doi:10.1056/NEJM199507273330403

    Article  PubMed  CAS  Google Scholar 

  135. Wiedemann R, Ghofrani HA, Weissmann N, Schermuly R, Quanz K, Grimminger F, Seeger W, Olschewski H (2001) Atrial natriuretic peptide in severe primary and nonprimary pulmonary hypertension: response to iloprost inhalation. J Am Coll Cardiol 38(4):1130–1136 pii: S0735-1097(01)01490-5

    Article  PubMed  CAS  Google Scholar 

  136. Boulanger CM, Amabile N, Tedgui A (2006) Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48(2):180–186. doi:10.1161/01.HYP.0000231507.00962.b5

    Article  PubMed  CAS  Google Scholar 

  137. Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM (2005) Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 16(11):3381–3388. doi:10.1681/ASN.2005050535

    Article  PubMed  CAS  Google Scholar 

  138. Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, Rame EJ, Grossman W, De Marco T, Yeghiazarians Y (2008) Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177(11):1268–1275. doi:10.1164/rccm.200710-1458OC

    Article  PubMed  CAS  Google Scholar 

  139. Bakouboula B, Morel O, Faure A, Zobairi F, Jesel L, Trinh A, Zupan M, Canuet M, Grunebaum L, Brunette A, Desprez D, Chabot F, Weitzenblum E, Freyssinet JM, Chaouat A, Toti F (2008) Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 177(5):536–543. doi:10.1164/rccm.200706-840OC

    Article  PubMed  CAS  Google Scholar 

  140. Tual-Chalot S, Guibert C, Muller B, Savineau JP, Andriantsitohaina R, Martinez MC (2010) Circulating microparticles from pulmonary hypertensive rats induce endothelial dysfunction. Am J Respir Crit Care Med 182(2):261–268. doi:10.1164/rccm.200909-1347OC

    Google Scholar 

  141. Pfister SL (2004) Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension 43(2):428–433. doi:10.1161/01.HYP.0000110906.77479.91

    Article  PubMed  CAS  Google Scholar 

  142. Dogne JM, Hanson J, Pratico D (2005) Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis. Trends Pharmacol Sci 26(12):639–644. doi:10.1016/j.tips.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  143. Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, Loyd JE (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327(2):70–75. doi:10.1056/NEJM199207093270202

    Article  PubMed  CAS  Google Scholar 

  144. Veyradier A, Nishikubo T, Humbert M, Wolf M, Sitbon O, Simonneau G, Girma JP, Meyer D (2000) Improvement of von Willebrand factor proteolysis after prostacyclin infusion in severe pulmonary arterial hypertension. Circulation 102(20):2460–2462

    Article  PubMed  CAS  Google Scholar 

  145. Kawut SM, Horn EM, Berekashvili KK, Widlitz AC, Rosenzweig EB, Barst RJ (2005) von Willebrand factor independently predicts long-term survival in patients with pulmonary arterial hypertension. Chest 128(4):2355–2362. doi:10.1378/chest.128.4.2355

    Article  PubMed  CAS  Google Scholar 

  146. Shitrit D, Bendayan D, Bar-Gil-Shitrit A, Huerta M, Rudensky B, Fink G, Kramer MR (2002) Significance of a plasma D-dimer test in patients with primary pulmonary hypertension. Chest 122(5):1674–1678

    Article  PubMed  Google Scholar 

  147. Shitrit D, Bendayan D, Rudensky B, Izbicki G, Huerta M, Fink G, Kramer MR (2002) Elevation of ELISA d-dimer levels in patients with primary pulmonary hypertension. Respiration 69(4):327–329 pii: 63270

    Article  PubMed  CAS  Google Scholar 

  148. Kiatchoosakun S, Ungkasekvinai W, Wonvipaporn C, Tatsanavivat P, Foocharoen C, Suwannaroj S, Nanagara R (2007) D-dimer and pulmonary arterial hypertension in systemic sclerosis. J Med Assoc Thai 90(10):2024–2029

    PubMed  Google Scholar 

  149. Nickel N, Kempf T, Tapken H, Tongers J, Laenger F, Lehmann U, Golpon H, Olsson K, Wilkins MR, Gibbs JS, Hoeper MM, Wollert KC (2008) Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 178(5):534–541. doi:10.1164/rccm.200802-235OC

    Article  PubMed  CAS  Google Scholar 

  150. Meadows CA, Risbano MG, Zhang L, Geraci MW, Tuder RM, Collier DH, Bull TM Increased expression of growth differentiation factor-15 in systemic sclerosis-associated pulmonary arterial hypertension. Chest 139 (5):994–1002. doi:10.1378/chest.10-0302

  151. Nickel N, Jonigk D, Kempf T, Bockmeyer CL, Maegel L, Rische J, Laenger F, Lehmann U, Sauer C, Greer M, Welte T, Hoeper MM, Golpon HA GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells. Respir Res 12:62. doi:10.1186/1465-9921-12-62

  152. Cacoub P, Dorent R, Nataf P, Carayon A, Riquet M, Noe E, Piette JC, Godeau P, Gandjbakhch I (1997) Endothelin-1 in the lungs of patients with pulmonary hypertension. Cardiovasc Res 33(1):196–200 pii: S0008-6363(96)00189-7

    Article  PubMed  CAS  Google Scholar 

  153. Rubens C, Ewert R, Halank M, Wensel R, Orzechowski HD, Schultheiss HP, Hoeffken G (2001) Big endothelin-1 and endothelin-1 plasma levels are correlated with the severity of primary pulmonary hypertension. Chest 120(5):1562–1569

    Article  PubMed  CAS  Google Scholar 

  154. Stewart DJ, Levy RD, Cernacek P, Langleben D (1991) Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med 114(6):464–469

    PubMed  CAS  Google Scholar 

  155. Cody RJ, Haas GJ, Binkley PF, Capers Q, Kelley R (1992) Plasma endothelin correlates with the extent of pulmonary hypertension in patients with chronic congestive heart failure. Circulation 85(2):504–509

    Article  PubMed  CAS  Google Scholar 

  156. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Stewart DJ (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328(24):1732–1739. doi:10.1056/NEJM199306173282402

    Article  PubMed  CAS  Google Scholar 

  157. Barst RJ, Langleben D, Frost A, Horn EM, Oudiz R, Shapiro S, McLaughlin V, Hill N, Tapson VF, Robbins IM, Zwicke D, Duncan B, Dixon RA, Frumkin LR (2004) Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med 169(4):441–447. doi:10.1164/rccm.200307-957OC

    Article  PubMed  Google Scholar 

  158. Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S, Leconte I, Landzberg M, Simonneau G (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346(12):896–903. doi:10.1056/NEJMoa012212

    Article  PubMed  CAS  Google Scholar 

  159. Galie N, Olschewski H, Oudiz RJ, Torres F, Frost A, Ghofrani HA, Badesch DB, McGoon MD, McLaughlin VV, Roecker EB, Gerber MJ, Dufton C, Wiens BL, Rubin LJ (2008) Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 117(23):3010–3019. doi:10.1161/CIRCULATIONAHA.107.742510

    Article  PubMed  CAS  Google Scholar 

  160. Aubert JD (2005) Biochemical markers in the management of pulmonary hypertension. Swiss Med Wkly 135(3–4):43–49. doi:2005/03/smw-10723

    PubMed  CAS  Google Scholar 

  161. Montani D, Souza R, Binkert C, Fischli W, Simonneau G, Clozel M, Humbert M (2007) Endothelin-1/endothelin-3 ratio: a potential prognostic factor of pulmonary arterial hypertension. Chest 131(1):101–108. doi:10.1378/chest.06-0682

    Article  PubMed  CAS  Google Scholar 

  162. Otterdal K, Andreassen AK, Yndestad A, Oie E, Sandberg WJ, Dahl CP, Pedersen TM, Ueland T, Gullestad L, Brosstad FR, Aukrust P, Damas JK (2008) Raised LIGHT levels in pulmonary arterial hypertension: potential role in thrombus formation. Am J Respir Crit Care Med 177(2):202–207. doi:10.1164/rccm.200703-506OC

    Article  PubMed  CAS  Google Scholar 

  163. Quarck R, Nawrot T, Meyns B, Delcroix M (2009) C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol 53(14):1211–1218. doi:10.1016/j.jacc.2008.12.038

    Article  PubMed  CAS  Google Scholar 

  164. Sztrymf B, Souza R, Bertoletti L, Jais X, Sitbon O, Price LC, Simonneau G, Humbert M (2010) Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J 35(6):1286–1293. doi:10.1183/09031936.00070209

    Google Scholar 

  165. Paulin R, Courboulin A, Barrier M, Bonnet S (2011) From oncoproteins/tumor suppressors to microRNAs, the newest therapeutic targets for pulmonary arterial hypertension. J Mol Med (Berl). doi:10.1007/s00109-011-0788-5

  166. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122(9):920–927. doi:10.1161/CIRCULATIONAHA.109.933762

  167. Humbert M, Monti G, Fartoukh M, Magnan A, Brenot F, Rain B, Capron F, Galanaud P, Duroux P, Simonneau G, Emilie D (1998) Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur Respir J 11(3):554–559

    PubMed  CAS  Google Scholar 

  168. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115(10):2811–2821. doi:10.1172/JCI24838

    Article  PubMed  CAS  Google Scholar 

  169. Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, Hu F, Ballabh P, Podlutsky A, Losonczy G, de Cabo R, Mathew R, Wolin MS, Ungvari Z (2009) Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 54(3):668–675. doi:10.1161/HYPERTENSIONAHA.109.133397

    Article  PubMed  CAS  Google Scholar 

  170. Frasch HF, Marshall C, Marshall BE (1999) Endothelin-1 is elevated in monocrotaline pulmonary hypertension. Am J Physiol 276(2 Pt 1):L304–310

    PubMed  CAS  Google Scholar 

  171. Gonzalez RM, Daly DS, Tan R, Marks JR, Zangar RC Plasma Biomarker Profiles Differ Depending on Breast Cancer Subtype but RANTES Is Consistently Increased. Cancer Epidemiol Biomarkers Prev 20(7):1543–1551. doi:10.1158/1055-9965.EPI-10-1248

  172. Nastase A, Paslaru L, Niculescu AM, Ionescu M, Dumitrascu T, Herlea V, Dima S, Gheorghe C, Lazar V, Popescu I (2011) Prognostic and predictive potential molecular biomarkers in colon cancer. Chirurgia (Bucur) 106(2):177–185

    Google Scholar 

  173. Klebe S, Henderson DW (2011) Early stages of mesothelioma, screening and biomarkers. Recent Results Cancer Res 189:169–193. doi:10.1007/978-3-642-10862-4_10

  174. Tronov VA, Artamonov DN, Abramov ME, Gorbacheva LB (2011) Cellular markers based on DNA damage and repair (BER, MMR), expression of MLHI, MSH2, FasR, and cell death of lymphocytes as predictive parameters for clinical response to chemotherapy of melanoma. Tsitologiia 53(1):10–16

    Google Scholar 

  175. Fouty BW, Grimison B, Fagan KA, Le Cras TD, Harral JW, Hoedt-Miller M, Sclafani RA, Rodman DM (2001) p27(Kip1) is important in modulating pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 25(5):652–658

    PubMed  CAS  Google Scholar 

  176. Yu L, Quinn DA, Garg HG, Hales CA (2005) Cyclin-dependent kinase inhibitor p27Kip1, but not p21WAF1/Cip1, is required for inhibition of hypoxia-induced pulmonary hypertension and remodeling by heparin in mice. Circ Res 97(9):937–945. doi:10.1161/01.RES.0000188211.83193.1a

    Article  PubMed  CAS  Google Scholar 

  177. Yang C, Wang S, Liang T, Wang J, Wang K, Wang B (2001) The roles of bcl-2 gene family in the pulmonary artery remodeling of hypoxia pulmonary hypertension in rats. Chin Med Sci J 16(3):182–184

    PubMed  CAS  Google Scholar 

  178. Moudgil R, Michelakis ED, Archer SL (2006) The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 13(8):615–632. doi:10.1080/10739680600930222

    Article  PubMed  CAS  Google Scholar 

  179. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39 (3):373–384. doi:10.1016/j.molcel.2010.07.011

  180. Hatton N, Frech T, Smith B, Sawitzke A, Scholand MB, Markewitz B Transforming growth factor signalling: a common pathway in pulmonary arterial hypertension and systemic sclerosis. Int J Clin Pract 65 Suppl 172:35–43. doi:10.1111/j.1742-1241.2011.02726.x

  181. Liu XG, Zhu WY, Huang YY, Ma LN, Zhou SQ, Wang YK, Zeng F, Zhou JH, Zhang YK (2011) High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med Oncol. doi:10.1007/s12032-011-9923-y

    Google Scholar 

  182. Wang M, Li W, Chang GQ, Ye CS, Ou JS, Li XX, Liu Y, Cheang TY, Huang XL, Wang SM (2011) MicroRNA-21 Regulates Vascular Smooth Muscle Cell Function via Targeting Tropomyosin 1 in Arteriosclerosis Obliterans of Lower Extremities. Arterioscler Thromb Vasc Biol 31 (9):2044–2053. doi:10.1161/ATVBAHA.111.229559

  183. Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299(6):L861–871. doi:10.1152/ajplung.00201.2010

    Google Scholar 

  184. Caruso P, Maclean MR, Khanin R, McClure J, Soon E, Southwood M, McDonald RA, Greig JA, Robertson KE, Masson R, Denby L, Dempsie Y, Long L, Morrell NW, Baker AH (2010) Dynamic changes in lung MicroRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol. doi:10.1161/ATVBAHA.109.202028

    PubMed  Google Scholar 

  185. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867. doi:10.1016/j.molcel.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  186. Fasanaro P, Greco S, Lorenzi M, Pescatori M, Brioschi M, Kulshreshtha R, Banfi C, Stubbs A, Calin GA, Ivan M, Capogrossi MC, Martelli F (2009) An integrated approach for experimental target identification of hypoxia-induced miR-210. J Biol Chem 284(50):35134–35143. doi:10.1074/jbc.M109.052779

    Article  PubMed  CAS  Google Scholar 

  187. Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, Li C, O’Brien-Jenkins A, Katsaros D, Weber BL, Simon C, Coukos G, Zhang L (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7(2):255–264 pii:5297

    Article  PubMed  CAS  Google Scholar 

  188. Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29(30):4362–4368. doi:10.1038/onc.2010.193

    Google Scholar 

  189. Drebber U, Lay M, Wedemeyer I, Vallbohmer D, Bollschweiler E, Brabender J, Monig SP, Holscher AH, Dienes HP, Odenthal M (2011) Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy. Int J Oncol 39(2):409–415. doi:10.3892/ijo.2011.1036

    Google Scholar 

  190. Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105(2):158–166. doi:10.1161/CIRCRESAHA.109.197517

    Article  PubMed  CAS  Google Scholar 

  191. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A (2011) Analysis of Circulating MicroRNA: preanalytical and analytical challenges. Clin Chem. doi:10.1373/clinchem.2010.157198

    PubMed  Google Scholar 

  192. Chen Y, Zhang H, Xu A, Li N, Liu J, Liu C, Lv D, Wu S, Huang L, Yang S, He D, Xiao X (2006) Elevation of serum l-lactate dehydrogenase B correlated with the clinical stage of lung cancer. Lung Cancer 54(1):95–102. doi:10.1016/j.lungcan.2006.06.014

    Article  PubMed  Google Scholar 

  193. Kim K, Taylor SL, Ganti S, Guo L, Osier MV, Weiss RH (2011) Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. OMICS 15(5):293–303. doi:10.1089/omi.2010.0094

    Google Scholar 

  194. Hoshikawa Y, Ono S, Suzuki S, Tanita T, Chida M, Song C, Noda M, Tabata T, Voelkel NF, Fujimura S (2001) Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol 90(4):1299–1306

    PubMed  CAS  Google Scholar 

  195. Al-Mehdi AB, Zhao G, Dodia C, Tozawa K, Costa K, Muzykantov V, Ross C, Blecha F, Dinauer M, Fisher AB (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83(7):730–737

    Article  PubMed  CAS  Google Scholar 

  196. Tuder RM, Chacon M, Alger L, Wang J, Taraseviciene-Stewart L, Kasahara Y, Cool CD, Bishop AE, Geraci M, Semenza GL, Yacoub M, Polak JM, Voelkel NF (2001) Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 195(3):367–374. doi:10.1002/path.953

    Article  PubMed  CAS  Google Scholar 

  197. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D (1995) Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 151(5):1628–1631

    PubMed  CAS  Google Scholar 

  198. Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, Voelkel NF (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169(6):764–769. doi:10.1164/rccm.200301-147OC

    Article  PubMed  Google Scholar 

  199. Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, Stanke-Labesque F, Pison C (2001) Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 164(6):1038–1042

    PubMed  CAS  Google Scholar 

  200. Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D, Oppedisano R, Thomassen MJ, Erzurum SC (1998) Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med 158(3):917–923

    PubMed  CAS  Google Scholar 

  201. Rhoades RA, Packer CS, Roepke DA, Jin N, Meiss RA (1990) Reactive oxygen species alter contractile properties of pulmonary arterial smooth muscle. Can J Physiol Pharmacol 68(12):1581–1589

    Article  PubMed  CAS  Google Scholar 

  202. Demiryurek AT, Wadsworth RM (1999) Superoxide in the pulmonary circulation. Pharmacol Ther 84(3):355–365

    Article  PubMed  CAS  Google Scholar 

  203. Gupte SA, Kaminski PM, Floyd B, Agarwal R, Ali N, Ahmad M, Edwards J, Wolin MS (2005) Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries. Am J Physiol Heart Circ Physiol 288(1):H13–21. doi:10.1152/ajpheart.00629.2004

    Article  PubMed  CAS  Google Scholar 

  204. Redout EM, Wagner MJ, Zuidwijk MJ, Boer C, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75(4):770–781. doi:10.1016/j.cardiores.2007.05.012

    Article  PubMed  CAS  Google Scholar 

  205. Farahmand F, Hill MF, Singal PK (2004) Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem 260(1–2):21–29

    PubMed  Google Scholar 

  206. DeMarco VG, Habibi J, Whaley-Connell AT, Schneider RI, Heller RL, Bosanquet JP, Hayden MR, Delcour K, Cooper SA, Andresen BT, Sowers JR, Dellsperger KC (2008) Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol 294(6):H2659–2668. doi:10.1152/ajpheart.00953.2007

    Article  PubMed  CAS  Google Scholar 

  207. Voelkel MA, Wynne KM, Badesch DB, Groves BM, Voelkel NF (2000) Hyperuricemia in severe pulmonary hypertension. Chest 117(1):19–24

    Article  PubMed  CAS  Google Scholar 

  208. Nagaya N, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Nakanishi N, Yamagishi M, Kunieda T, Miyatake K (1999) Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension. Am J Respir Crit Care Med 160(2):487–492

    PubMed  CAS  Google Scholar 

  209. Van Albada ME, Loot FG, Fokkema R, Roofthooft MT, Berger RM (2008) Biological serum markers in the management of pediatric pulmonary arterial hypertension. Pediatr Res 63(3):321–327. doi:10.1203/PDR.0b013e318163a2e7

    Article  PubMed  CAS  Google Scholar 

  210. Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarelli T, Costantini F, Capani F, Patrono C (1999) In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99(2):224–229

    Article  PubMed  CAS  Google Scholar 

  211. Pratico D, Barry OP, Lawson JA, Adiyaman M, Hwang SW, Khanapure SP, Iuliano L, Rokach J, FitzGerald GA (1998) IPF2alpha-I: an index of lipid peroxidation in humans. Proc Natl Acad Sci USA 95(7):3449–3454

    Article  PubMed  CAS  Google Scholar 

  212. Jankov RP, Luo X, Cabacungan J, Belcastro R, Frndova H, Lye SJ, Tanswell AK (2000) Endothelin-1 and O2-mediated pulmonary hypertension in neonatal rats: a role for products of lipid peroxidation. Pediatr Res 48(3):289–298

    Article  PubMed  CAS  Google Scholar 

  213. Janssen LJ (2008) Isoprostanes and lung vascular pathology. Am J Respir Cell Mol Biol 39(4):383–389. doi:10.1165/rcmb.2008-0109TR

    Article  PubMed  CAS  Google Scholar 

  214. Cracowski JL, Durand T, Bessard G (2002) Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends Pharmacol Sci 23(8):360–366 pii: S0165614702020539

    Article  PubMed  CAS  Google Scholar 

  215. Waugh RJ, Morrow JD, Roberts LJ 2nd, Murphy RC (1997) Identification and relative quantitation of F2-isoprostane regioisomers formed in vivo in the rat. Free Radic Biol Med 23(6):943–954 pii: S0891-5849(97)00133-0

    Article  PubMed  CAS  Google Scholar 

  216. Kanai Y, Hori S, Tanaka T, Yasuoka M, Watanabe K, Aikawa N, Hosoda Y (1993) Role of 5-hydroxytryptamine in the progression of monocrotaline induced pulmonary hypertension in rats. Cardiovasc Res 27(9):1619–1623

    Article  PubMed  CAS  Google Scholar 

  217. Herve P, Launay JM, Scrobohaci ML, Brenot F, Simonneau G, Petitpretz P, Poubeau P, Cerrina J, Duroux P, Drouet L (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99(3):249–254 pii: S0002934399801569

    Article  PubMed  CAS  Google Scholar 

  218. Lee SL, Wang WW, Fanburg BL (1998) Superoxide as an intermediate signal for serotonin-induced mitogenesis. Free Radic Biol Med 24(5):855–858 pii: S0891-5849(97)00359-6

    Article  PubMed  Google Scholar 

  219. Lee SL, Wang WW, Finlay GA, Fanburg BL (1999) Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am J Physiol 277(2 Pt 1):L282–291

    PubMed  CAS  Google Scholar 

  220. Bianchi P, Kunduzova O, Masini E, Cambon C, Bani D, Raimondi L, Seguelas MH, Nistri S, Colucci W, Leducq N, Parini A (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112(21):3297–3305. doi:10.1161/CIRCULATIONAHA.104.528133

    Article  PubMed  CAS  Google Scholar 

  221. Wong CM, Cheema AK, Zhang L, Suzuki YJ (2008) Protein carbonylation as a novel mechanism in redox signaling. Circ Res 102(3):310–318. doi:10.1161/CIRCRESAHA.107.159814

    Article  PubMed  CAS  Google Scholar 

  222. MacLean MR, Herve P, Eddahibi S, Adnot S (2000) 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br J Pharmacol 131(2):161–168. doi:10.1038/sj.bjp.0703570

    Article  PubMed  CAS  Google Scholar 

  223. Hironaka E, Hongo M, Sakai A, Mawatari E, Terasawa F, Okumura N, Yamazaki A, Ushiyama Y, Yazaki Y, Kinoshita O (2003) Serotonin receptor antagonist inhibits monocrotaline-induced pulmonary hypertension and prolongs survival in rats. Cardiovasc Res 60(3):692–699 pii: S0008636303006539

    Article  PubMed  CAS  Google Scholar 

  224. Guignabert C, Raffestin B, Benferhat R, Raoul W, Zadigue P, Rideau D, Hamon M, Adnot S, Eddahibi S (2005) Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation 111(21):2812–2819. doi:10.1161/CIRCULATIONAHA.104.524926

    Article  PubMed  CAS  Google Scholar 

  225. Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 40(3):501–506. doi:10.1016/j.freeradbiomed.2005.08.047

    Article  PubMed  CAS  Google Scholar 

  226. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4):1620–1624

    Article  PubMed  CAS  Google Scholar 

  227. Joshi MS, Ponthier JL, Lancaster JR Jr (1999) Cellular antioxidant and pro-oxidant actions of nitric oxide. Free Radic Biol Med 27(11–12):1357–1366 pii: S0891-5849(99)00179-3

    Article  PubMed  CAS  Google Scholar 

  228. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93(23):13176–13181

    Article  PubMed  CAS  Google Scholar 

  229. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377(6546):239–242. doi:10.1038/377239a0

    Article  PubMed  CAS  Google Scholar 

  230. Fagan KA, Tyler RC, Sato K, Fouty BW, Morris KG Jr, Huang PL, McMurtry IF, Rodman DM (1999) Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am J Physiol 277(3 Pt 1):L472–478

    PubMed  CAS  Google Scholar 

  231. Chun YS, Kim MS, Park JW (2002) Oxygen-dependent and -independent regulation of HIF-1alpha. J Korean Med Sci 17(5):581–588 pii: 200210581

    PubMed  CAS  Google Scholar 

  232. Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64(5–6):993–998 pii: S0006295202011681

    Article  PubMed  CAS  Google Scholar 

  233. Rubin L, Simonneau G (2010) Perspective on the optimal endpoints for pulmonary arterial hypertension trials. Curr Opin Pulm Med 16(Suppl 1):S43–46. doi:10.1097/01.mcp.0000370210.53379.b3

    Google Scholar 

  234. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271(4 Pt 1):C1172–1180

    PubMed  CAS  Google Scholar 

  235. Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL (1998) Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 275(4 Pt 1):L818–826

    PubMed  CAS  Google Scholar 

  236. Tuder RM, Flook BE, Voelkel NF (1995) Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 95(4):1798–1807. doi:10.1172/JCI117858

    Article  PubMed  CAS  Google Scholar 

  237. Gupte SA, Wolin MS (2008) Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 10(6):1137–1152. doi:10.1089/ars.2007.1995

    Article  PubMed  CAS  Google Scholar 

  238. Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, Husain AN, Cipriani N, Rehman J (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121(24):2661–2671. doi:10.1161/CIRCULATIONAHA.109.916098

    Google Scholar 

  239. Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, van de Borne P (2004) Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 110(10):1308–1312. doi:10.1161/01.CIR.0000140724.90898.D3

    Article  PubMed  Google Scholar 

  240. McGowan CL, Swiston JS, Notarius CF, Mak S, Morris BL, Picton PE, Granton JT, Floras JS (2009) Discordance between microneurographic and heart-rate spectral indices of sympathetic activity in pulmonary arterial hypertension. Heart 95(9):754–758. doi:10.1136/hrt.2008.157115

    Article  PubMed  CAS  Google Scholar 

  241. Zhang J, Zhang Y, Li N, Liu Z, Xiong C, Ni X, Pu Y, Hui R, He J, Pu J (2009) Potential diagnostic biomarkers in serum of idiopathic pulmonary arterial hypertension. Respir Med 103(12):1801–1806. doi:10.1016/j.rmed.2009.07.017

    Article  PubMed  Google Scholar 

  242. Geraci MW, Moore M, Gesell T, Yeager ME, Alger L, Golpon H, Gao B, Loyd JE, Tuder RM, Voelkel NF (2001) Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ Res 88(6):555–562

    Article  PubMed  CAS  Google Scholar 

  243. Hampole CV, Mehrotra AK, Thenappan T, Gomberg-Maitland M, Shah SJ (2009) Usefulness of red cell distribution width as a prognostic marker in pulmonary hypertension. Am J Cardiol 104(6):868–872. doi:10.1016/j.amjcard.2009.05.016

    Article  PubMed  CAS  Google Scholar 

  244. Rich S, Kieras K, Hart K, Groves BM, Stobo JD, Brundage BH (1986) Antinuclear antibodies in primary pulmonary hypertension. J Am Coll Cardiol 8(6):1307–1311

    Article  PubMed  CAS  Google Scholar 

  245. Dib H, Tamby MC, Bussone G, Regent A, Berezne A, Lafine C, Broussard C, Simonneau G, Guillevin L, Witko-Sarsat V, Humbert M, Mouthon L Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. Eur Respir J. doi:09031936.00181410 [pii]10.1183/09031936.00181410

  246. Terrier B, Tamby MC, Camoin L, Guilpain P, Berezne A, Tamas N, Broussard C, Hotellier F, Humbert M, Simonneau G, Guillevin L, Mouthon L (2010) Antifibroblast antibodies from systemic sclerosis patients bind to {alpha}-enolase and are associated with interstitial lung disease. Ann Rheum Dis 69(2):428–433. doi:10.1136/ard.2008.104299

    Google Scholar 

  247. Forfia PR, Mathai SC, Fisher MR, Housten-Harris T, Hemnes AR, Champion HC, Girgis RE, Hassoun PM (2008) Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 177(12):1364–1369. doi:10.1164/rccm.200712-1876OC

    Article  PubMed  CAS  Google Scholar 

  248. Heresi GA, Aytekin M, Newman J, DiDonato J, Dweik RA (2010) Plasma levels of high-density lipoprotein cholesterol and outcomes in pulmonary arterial hypertension. Am J Respir Crit Care Med 182(5):661–668. doi:10.1164/rccm.201001-0007OC

    Google Scholar 

  249. Ghofrani HA, Distler O, Gerhardt F, Gorenflo M, Grunig E, Haefeli WE, Held M, Hoeper MM, Kahler CM, Kaemmerer H, Klose H, Kollner V, Kopp B, Mebus S, Meyer A, Miera O, Pittrow D, Riemekasten G, Rosenkranz S, Schranz D, Voswinckel R, Olschewski H (2010) Treatment of pulmonary arterial hypertension (PAH): recommendations of the Cologne Consensus Conference. Dtsch Med Wochenschr 135 (Suppl3):S87–101. doi:10.1055/s-0030-1263316

  250. Jardim C, Hoette S, Souza R Contemporary issues in pulmonary hypertension. Eur Respir Rev 19(118):266–271. doi:10.1183/09059180.00008810

  251. Schumann C, Lepper PM, Frank H, Schneiderbauer R, Wibmer T, Kropf C, Stoiber KM, Rudiger S, Kruska L, Krahn T, Kramer F (2010) Circulating biomarkers of tissue remodelling in pulmonary hypertension. Biomarkers 15(6):523–532. doi:10.3109/1354750X.2010.492431

    Google Scholar 

  252. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30(20):2493–2537. doi:10.1093/eurheartj/ehp297

    Google Scholar 

  253. Leuchte HH, Holzapfel M, Baumgartner RA, Neurohr C, Vogeser M, Behr J (2005) Characterization of brain natriuretic peptide in long-term follow-up of pulmonary arterial hypertension. Chest 128:2368–2374

    Google Scholar 

  254. Ciarka A, Doan V, Velez-Roa S, Naeije R, van de Borne P (2010). Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am J Respir Crit Care Med 181:1269–1275

    Google Scholar 

Download references

Acknowledgments

M.H.J. is supported by CAPES (Brazilian Research Agency) and by Laval University. J.M. is a recipient of a Graduate Scholarship from the Canadian Institutes of Health Research CIHR) and A.C. received a graduate scholarship from La Société Québécoise d’Hypertension Artérielle (SQHA). This work was support by Canada Research Chairs (CRC) and by Canadian Institutes of Health Research (CIHR) to S.B. We would like to thank Dr. Richard Poulin for editorial help in processing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Bonnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrier, M., Meloche, J., Jacob, M.H. et al. Today’s and tomorrow’s imaging and circulating biomarkers for pulmonary arterial hypertension. Cell. Mol. Life Sci. 69, 2805–2831 (2012). https://doi.org/10.1007/s00018-012-0950-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0950-4

Keywords

Navigation