Skip to main content

Advertisement

Log in

The Cystic Fibrosis Neutrophil: A Specialized Yet Potentially Defective Cell

  • REVIEW
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adib-Conquy M, Pedron T, Petit-Bertron AF et al (2008) Neutrophils in cystic fibrosis display a distinct gene expression pattern. Mol Med 14:36–44

    PubMed  CAS  Google Scholar 

  • Aiuti A, Slavin S, Aker M, Ficara F et al (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–2413

    PubMed  CAS  Google Scholar 

  • Alexis NE, Muhlebach MS, Peden DB et al (2006) Attenuation of host defense function of lung phagocytes in young cystic fibrosis patients. J Cyst Fibros 5:17–25

    PubMed  CAS  Google Scholar 

  • Anderson R (1989) Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis 159:966–973

    PubMed  CAS  Google Scholar 

  • Aoshiba K, Nagai A, Konno K (1995) Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 39:872–877

    PubMed  CAS  Google Scholar 

  • Armstrong DS, Grimwood K, Carlin JB et al (1997) Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 156(4 Pt 1):1197–1204

    PubMed  CAS  Google Scholar 

  • Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744

    PubMed  CAS  Google Scholar 

  • Badwey JA, Curnutte JT, Robinson JM et al (1980) Comparative aspects of oxidative metabolism of neutrophils from human blood and guinea pig peritonea: magnitude of the respiratory burst, dependence upon stimulating agents, and localization of the oxidases. J Cell Physiol 105:541–545

    PubMed  CAS  Google Scholar 

  • Baldridge C, Gerard RW (1933) The extra respiratory burst of phagocytosis. Am J Phsiol 103:235–236

    CAS  Google Scholar 

  • Balfour-Lynn IM, Lees B, Hall P et al (2006) Multicenter randomized controlled trial of withdrawal of inhaled corticosteroids in cystic fibrosis. Am J Respir Crit Care Med 173:1356–1362

    PubMed  CAS  Google Scholar 

  • Balough K, McCubbin M, Weinberger M et al (1995) The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol 20:63–70

    PubMed  CAS  Google Scholar 

  • Bender JG, McPhail LC, Van Epps DE (1983) Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme. J Immunol 130:2316–2323

    PubMed  CAS  Google Scholar 

  • Berger M, Sorensen RU, Tosi MF et al (1989) Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J Clin Invest 84:1302–1313

    PubMed  CAS  Google Scholar 

  • Bergin DA, Greene CM, Sterchi EE et al (2008) Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway. J Biol Chem 283:31736–31744

    PubMed  CAS  Google Scholar 

  • Bergsson G, Reeves EP, McNally P et al (2009) LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. J Immunol 183:543–551

    PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Look D, Tobacman JK (2007) Increased arylsulfatase B activity in cystic fibrosis cells following correction of CFTR. Clin Chim Acta 380:122–127

    PubMed  CAS  Google Scholar 

  • Bianchi SM, Prince LR, McPhillips K et al (2008) Impairment of apoptotic cell engulfment by pyocyanin, a toxic metabolite of Pseudomonas aeruginosa. Am J Respir Crit Care Med 177:35–43

    PubMed  CAS  Google Scholar 

  • Birrer P, McElvaney NG, Rudeberg A et al (1994) Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med 150:207–213

    PubMed  CAS  Google Scholar 

  • Bodini A, D’Orazio C, Peroni D et al (2005) Biomarkers of neutrophilic inflammation in exhaled air of cystic fibrosis children with bacterial airway infections. Pediatr Pulmonol 40:494–499

    PubMed  Google Scholar 

  • Borregaard N, Sorensen OE, Theilgaard-Monch K (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28:340–345

    PubMed  CAS  Google Scholar 

  • Brennan S, Cooper D, Sly PD (2001) Directed neutrophil migration to IL-8 is increased in cystic fibrosis: a study of the effect of erythromycin. Thorax 56:62–64

    PubMed  CAS  Google Scholar 

  • Britigan BE, Hayek MB, Doebbeling BN et al (1993) Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis. Infect Immun 61:5049–5055

    PubMed  CAS  Google Scholar 

  • Brockbank S, Downey D, Elborn JS et al (2005) Effect of cystic fibrosis exacerbations on neutrophil function. Int Immunopharmacol 5:601–608

    PubMed  CAS  Google Scholar 

  • Bylund J, Burgess LA, Cescutti P et al (2006) Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem 281:2526–2532

    PubMed  CAS  Google Scholar 

  • Campbell EJ, Campbell MA, Owen CA (2000) Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J Immunol 165:3366–3374

    PubMed  CAS  Google Scholar 

  • Cantin A, Woods DE (1993) Protection by antibiotics against myeloperoxidase-dependent cytotoxicity to lung epithelial cells in vitro. J Clin Invest 91:38–45

    PubMed  CAS  Google Scholar 

  • Cantin AM, North SL, Fells GA et al (1987) Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis. J Clin Invest 79:1665–1673

    PubMed  CAS  Google Scholar 

  • Cantin A, Bilodeau G, Begin R (1989) Granulocyte elastase-mediated proteolysis of alpha 1-antitrypsin in cystic fibrosis bronchopulmonary secretions. Pediatr Pulmonol 7:12–17

    PubMed  CAS  Google Scholar 

  • Cavarra E, Martorana PA, Gambelli F et al (1996) Neutrophil recruitment into the lungs is associated with increased lung elastase burden, decreased lung elastin, and emphysema in alpha 1 proteinase inhibitor-deficient mice. Lab Invest 75:273–280

    PubMed  CAS  Google Scholar 

  • Chapman RW, Minnicozzi M, Celly CS et al (2007) A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J Pharmacol Exp Ther 322:486–493

    PubMed  CAS  Google Scholar 

  • Church JA, Keens TG, Wang CI et al (1979) Normal neutrophil and monocyte chemotaxis in patients with cystic fibrosis. J Pediatr 95:2724

    PubMed  CAS  Google Scholar 

  • Coakley RJ, Taggart C, Canny G et al (2000) Altered intracellular pH regulation in neutrophils from patients with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 279:L66–L74

    PubMed  CAS  Google Scholar 

  • Coakley RJ, Taggart C, McElvaney NG et al (2002) Cytosolic pH and the inflammatory microenvironment modulate cell death in human neutrophils after phagocytosis. Blood 100:3383–3391

    PubMed  CAS  Google Scholar 

  • Cole AM, Liao HI, Stuchlik O et al (2002) Cationic polypeptides are required for antibacterial activity of human airway fluid. J Immunol 169:6985–6991

    PubMed  CAS  Google Scholar 

  • Confalonieri M, Mainardi E, Della Porta R et al (1998) Inhaled corticosteroids reduce neutrophilic bronchial inflammation in patients with chronic obstructive pulmonary disease. Thorax 53:583–585

    PubMed  CAS  Google Scholar 

  • Corvol H, Fitting C, Chadelat K et al (2003) Distinct cytokine production by lung and blood neutrophils from children with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 284:L997–L1003

    PubMed  CAS  Google Scholar 

  • Dai Y, Dean TP, Church MK et al (1994) Desensitisation of neutrophil responses by systemic interleukin 8 in cystic fibrosis. Thorax 49:867–871

    PubMed  CAS  Google Scholar 

  • Dakin CJ, Numa AH, Wang H et al (2002) Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 165:904–910

    PubMed  Google Scholar 

  • Dalet-Fumeron V, Guinec N, Pagano M (1993) In vitro activation of pro-cathepsin B by three serine proteinases: leucocyte elastase, cathepsin G, and the urokinase-type plasminogen activator. FEBS Lett 332:251–254

    PubMed  CAS  Google Scholar 

  • Davies JC, Geddes DM, Alton EW (2001) Gene therapy for cystic fibrosis. J Gene Med 3:409–417

    PubMed  CAS  Google Scholar 

  • Davis JM, Meyer JD, Barie PS et al (1990) Elevated production of neutrophil leukotriene B4 precedes pulmonary failure in critically ill surgical patients. Surg Gynecol Obstet 170:495–500

    PubMed  CAS  Google Scholar 

  • De Rose V, Oliva A, Messore B et al (1998) Circulating adhesion molecules in cystic fibrosis. Am J Respir Crit Care Med 157(4 Pt 1):1234–1239

    PubMed  Google Scholar 

  • Dean TP, Dai Y, Shute JK et al (1993) Interleukin-8 concentrations are elevated in bronchoalveolar lavage, sputum, and sera of children with cystic fibrosis. Pediatr Res 34:159–161

    PubMed  CAS  Google Scholar 

  • Devreotes PN, Zigmond SH (1988) Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu Rev Cell Biol 4:649–686

    PubMed  CAS  Google Scholar 

  • Doerfler ME, Danner RL, Shelhamer JH et al (1989) Bacterial lipopolysaccharides prime human neutrophils for enhanced production of leukotriene B4. J Clin Invest 83:970–977

    PubMed  CAS  Google Scholar 

  • Doerfler ME, Weiss J, Clark JD et al (1994) Bacterial lipopolysaccharide primes human neutrophils for enhanced release of arachidonic acid and causes phosphorylation of an 85-kD cytosolic phospholipase A2. J Clin Invest 93:1583–1591

    PubMed  CAS  Google Scholar 

  • Doerschuk CM, Tasaka S, Wang Q (2000) CD11/CD18-dependent and -independent neutrophil emigration in the lungs: how do neutrophils know which route to take? Am J Respir Cell Mol Biol 23:133–136

    PubMed  CAS  Google Scholar 

  • Downey DG, Brockbank S, Martin SL et al (2007) The effect of treatment of cystic fibrosis pulmonary exacerbations on airways and systemic inflammation. Pediatr Pulmonol 42:729–735

    PubMed  Google Scholar 

  • Eigen H, Rosenstein BJ, FitzSimmons S et al (1995) A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr 126:515–523

    PubMed  CAS  Google Scholar 

  • Elkington PT, O’Kane CM, Friedland JS (2005) The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol 142:12–20

    PubMed  CAS  Google Scholar 

  • Fadeel B, Ahlin A, Henter JI et al (1998) Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood 92:4808–4818

    PubMed  CAS  Google Scholar 

  • Ferry G, Lonchampt M, Pennel L et al (1997) Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Lett 402:111–115

    PubMed  CAS  Google Scholar 

  • Forehand JR, Pabst MJ, Phillips WA et al (1989) Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst. Role of intracellular free calcium. J Clin Invest 83:74–83

    PubMed  CAS  Google Scholar 

  • Fossati G, Moots RJ, Bucknall RC et al (2002) Differential role of neutrophil Fcgamma receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. Arthritis Rheum 46:1351–1361

    PubMed  CAS  Google Scholar 

  • Geraghty P, Greene CM, O’Mahony M et al (2007) Secretory leucocyte protease inhibitor inhibits interferon-gamma-induced cathepsin S expression. J Biol Chem 282:33389–33395

    PubMed  CAS  Google Scholar 

  • Geraghty P, Rogan MP, Greene CM et al (2008) Alpha-1-antitrypsin aerosolised augmentation abrogates neutrophil elastase-induced expression of cathepsin B and matrix metalloprotease 2 in vivo and in vitro. Thorax 63:621–626

    PubMed  CAS  Google Scholar 

  • Gibbons AM, McElvaney NG, Taggart CC et al (2009) Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation. J Microencapsul 26:513–522

    PubMed  CAS  Google Scholar 

  • Gilroy DW, Lawrence T, Perretti M et al (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3:401–416

    PubMed  CAS  Google Scholar 

  • Gon S, Gatanaga T, Sendo F (1996) Involvement of two types of TNF receptor in TNF-alpha induced neutrophil apoptosis. Microbiol Immunol 40:463–465

    PubMed  CAS  Google Scholar 

  • Gorrini M, Lupi A, Viglio S et al (2001) Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol 25:492–499

    PubMed  CAS  Google Scholar 

  • Gottlieb RA, Dosanjh A (1996) Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc Natl Acad Sci USA 93:3587–3591

    PubMed  CAS  Google Scholar 

  • Greene CM, McElvaney NG, O’Neill SJ et al (2004) Secretory leucoprotease inhibitor impairs Toll-like receptor 2- and 4-mediated responses in monocytic cells. Infect Immun 72:3684–3687

    PubMed  CAS  Google Scholar 

  • Gu Y, Harley IT, Henderson LB et al (2009) Identification of IFRD1 as a modifier gene for cystic fibrosis lung disease. Nature 458:1039–1042

    PubMed  CAS  Google Scholar 

  • Guthrie LA, McPhail LC, Henson PM et al (1984) Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med 160:1656–1671

    PubMed  CAS  Google Scholar 

  • Guyot N, Butler MW, McNally P et al (2008) Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J Biol Chem 283:32377–32385

    PubMed  CAS  Google Scholar 

  • Hallett MB, Lloyds D (1995) Neutrophil priming: the cellular signals that say ‘amber’ but not ‘green’. Immunol Today 16:264–268

    PubMed  CAS  Google Scholar 

  • Hansen CR, Pressler T, Koch C et al (2005) Long-term azitromycin treatment of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection; an observational cohort study. J Cyst Fibros 4:35–40

    PubMed  CAS  Google Scholar 

  • Hartl D, Latzin P, Hordijk P et al (2007) Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13:1423–1430

    PubMed  CAS  Google Scholar 

  • Haslett C, Guthrie LA, Kopaniak MM et al (1985) Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol 119:101–110

    PubMed  CAS  Google Scholar 

  • Heppner KJ, Matrisian LM, Jensen RA et al (1996) Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149:273–282

    PubMed  CAS  Google Scholar 

  • Hodge S, Hodge G, Brozyna S et al (2006) Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J 28:486–495

    PubMed  CAS  Google Scholar 

  • Holz O, Khalilieh S, Ludwig-Sengpiel A et al (2010) SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J 35:564–570

    PubMed  CAS  Google Scholar 

  • Hubbard RC, McElvaney NG, Sellers SE et al (1989) Recombinant DNA-produced alpha 1-antitrypsin administered by aerosol augments lower respiratory tract antineutrophil elastase defenses in individuals with alpha 1-antitrypsin deficiency. J Clin Invest 84:1349–1354

    PubMed  CAS  Google Scholar 

  • Hutchison ML, Poxton IR, Govan JR (1998) Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun 66:2033–2039

    PubMed  CAS  Google Scholar 

  • Ina K, Kusugami K, Hosokawa T et al (1999) Increased mucosal production of granulocyte colony-stimulating factor is related to a delay in neutrophil apoptosis in inflammatory bowel disease. J Gastroenterol Hepatol 14:46–53

    PubMed  CAS  Google Scholar 

  • Indik ZK, Park JG, Hunter S et al (1995) The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood 86:4389–4399

    PubMed  CAS  Google Scholar 

  • Jackson PL, Xu X, Wilson L et al (2010) Human neutrophil elastase-mediated cleavage sites of MMP-9 and TIMP-1: implications to cystic fibrosis proteolytic dysfunction. Mol Med 16:159–166

    PubMed  CAS  Google Scholar 

  • Jacobi J, Sela S, Cohen HI et al (2006) Priming of polymorphonuclear leukocytes: a culprit in the initiation of endothelial cell injury. Am J Physiol Heart Circ Physiol 290:H2051–H2058

    PubMed  CAS  Google Scholar 

  • Janoff A, White R, Carp H et al (1979) Lung injury induced by leukocytic proteases. Am J Pathol 97:111–136

    PubMed  CAS  Google Scholar 

  • Jungas T, Motta I, Duffieux F et al (2002) Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator. J Biol Chem 277:27912–27918

    PubMed  CAS  Google Scholar 

  • Karakoc GB, Inal A, Yilmaz M et al (2009) Exhaled breath condensate MMP-9 levels in children with bronchiectasis. Pediatr Pulmonol 44:1010–1016

    PubMed  Google Scholar 

  • Karnovsky ML (1962) Metabolic basis of phagocytic activity. Physiol Rev 42:143–168

    PubMed  CAS  Google Scholar 

  • Karnovsky ML, Badwey JA (1986) Respiratory burst during phagocytosis: an overview. Methods Enzymol 132:353–354

    PubMed  CAS  Google Scholar 

  • Keel M, Ungethum U, Steckholzer U et al (1997) Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 90:3356–3363

    PubMed  CAS  Google Scholar 

  • Kettle AJ, Chan T, Osberg I et al (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170:1317–1323

    PubMed  Google Scholar 

  • Khan TZ, Wagener JS, Bost T et al (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082

    PubMed  CAS  Google Scholar 

  • Koller DY, Urbanek R, Gotz M (1995) Increased degranulation of eosinophil and neutrophil granulocytes in cystic fibrosis. Am J Respir Crit Care Med 152:629–633

    PubMed  CAS  Google Scholar 

  • Konstan MW, Byard PJ, Hoppel CL et al (1995) Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 332:848–854

    PubMed  CAS  Google Scholar 

  • Konstan MW, Krenicky JE, Finney MR et al (2003) Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis and healthy subjects. J Pharmacol Exp Ther 306:1086–1091

    PubMed  CAS  Google Scholar 

  • Kristal B, Shurtz-Swirski R, Chezar J et al (1998) Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension. Am J Hypertens 11(8 Pt 1):921–928

    PubMed  CAS  Google Scholar 

  • Kurland G, Mark JD, Halsted CC et al (1986) Polymicrobial bacterial sepsis and defective neutrophil chemotaxis in an infant with cystic fibrosis. Pediatrics 78:1097–1101

    PubMed  CAS  Google Scholar 

  • Lawrence RH, Sorrelli TC (1992) Decreased polymorphonuclear leucocyte chemotactic response to leukotriene B4 in cystic fibrosis. Clin Exp Immunol 89:321–324

    PubMed  CAS  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    PubMed  CAS  Google Scholar 

  • Liles WC, Kiener PA, Ledbetter JA et al (1996) Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J Exp Med 184:429–440

    PubMed  CAS  Google Scholar 

  • Llewellyn-Jones CG, Harris TA, Stockley RA (1996) Effect of fluticasone propionate on sputum of patients with chronic bronchitis and emphysema. Am J Respir Crit Care Med 153:616–621

    PubMed  CAS  Google Scholar 

  • London SJ, Lehman TA, Taylor JA (1997) Myeloperoxidase genetic polymorphism and lung cancer risk. Cancer Res 57:5001–5003

    PubMed  CAS  Google Scholar 

  • Ma G, Greenwell-Wild T, Lei K et al (2004) Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Exp Med 200:1337–1346

    PubMed  CAS  Google Scholar 

  • Mackarel AJ, Plant BJ, FitzGerald MX et al (2005) Cystic fibrosis sputum stimulates CD18-independent neutrophil migration across endothelial cells. Exp Lung Res 31:377–390

    PubMed  CAS  Google Scholar 

  • Malech HL, Nauseef WM (1997) Primary inherited defects in neutrophil function: etiology and treatment. Semin Hematol 34:279–290

    PubMed  CAS  Google Scholar 

  • McElvaney NG, Hubbard RC, Birrer P et al (1991) Aerosol alpha 1-antitrypsin treatment for cystic fibrosis. Lancet 337:392–394

    PubMed  CAS  Google Scholar 

  • McElvaney NG, Nakamura H, Birrer P et al (1992) Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest 90:1296–1301

    PubMed  CAS  Google Scholar 

  • McGillen J, Phair J (1979) Polymorphonuclear leukocyte adherence to nylon: effect of oral corticosteroids. Infect Immun 26:542–546

    PubMed  CAS  Google Scholar 

  • McKeon DJ, Condliffe AM, Cowburn AS et al (2008) Prolonged survival of neutrophils from patients with Delta F508 CFTR mutations. Thorax 63:660–661

    PubMed  CAS  Google Scholar 

  • McNeely TB, Shugars DC, Rosendahl M et al (1997) Inhibition of human immunodeficiency virus type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood 90:1141–1149

    PubMed  CAS  Google Scholar 

  • McPhail LC, Clayton CC, Snyderman R (1984) The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J Biol Chem 259:5768–5775

    PubMed  CAS  Google Scholar 

  • Mercer-Jones MA, Heinzelmann M, Peyton JC et al (1997) Inhibition of neutrophil migration at the site of infection increases remote organ neutrophil sequestration and injury. Shock 8:193–199

    PubMed  CAS  Google Scholar 

  • Metchnikoff E (1883) Untersuchungen uber die intracellulare verdauung bei wirbellosen thieren. Arb Zoologisch Inst Univ Wien 5:141–168

    Google Scholar 

  • Moraes TJ, Plumb J, Martin R et al (2006) Abnormalities in the pulmonary innate immune system in cystic fibrosis. Am J Respir Cell Mol Biol 34:364–374

    PubMed  CAS  Google Scholar 

  • Moriceau S, Kantari C, Mocek J et al (2009) Coronin-1 is associated with neutrophil survival and is cleaved during apoptosis: potential implication in neutrophils from cystic fibrosis patients. J Immunol 182:7254–7263

    PubMed  CAS  Google Scholar 

  • Moriceau S, Lenoir G, Witko-Sarsat V (2010) In cystic fibrosis homozygotes and heterozygotes, neutrophil apoptosis is delayed and modulated by diamide or roscovitine: evidence for an innate neutrophil disturbance. J Innate Immun 2:260–266

    PubMed  CAS  Google Scholar 

  • Morris MR, Doull IJ, Dewitt S et al (2005) Reduced iC3b-mediated phagocytotic capacity of pulmonary neutrophils in cystic fibrosis. Clin Exp Immunol 142:68–75

    PubMed  CAS  Google Scholar 

  • Mukherjee G, Quinn MT, Linner JG et al (1994) Remodeling of the plasma membrane after stimulation of neutrophils with f-Met-Leu-Phe and dihydrocytochalasin B: identification of membrane subdomains containing NADPH oxidase activity. J Leukoc Biol 55:685–694

    PubMed  CAS  Google Scholar 

  • Nagra RM, Becher B, Tourtellotte WW et al (1997) Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol 78:97–107

    PubMed  CAS  Google Scholar 

  • Nielsen OH, Elmgreen J (1987) Activation of neutrophil chemotaxis by leukotriene B4 and 5-hydroxyeicosatetraenoic acid in chronic inflammatory bowel disease. Scand J Clin Lab Invest 47:605–611

    PubMed  CAS  Google Scholar 

  • Nikolaizik WH, Schöni MH (1996) Pilot study to assess the effect of inhaled corticosteroids on lung function in patients with cystic fibrosis. J Pediatr 128:271–274

    PubMed  CAS  Google Scholar 

  • Nobar SM, Zani ML, Boudier C et al (2005) Oxidized elafin and trappin poorly inhibit the elastolytic activity of neutrophil elastase and proteinase 3. FEBS J 272:5883–5893

    PubMed  CAS  Google Scholar 

  • Nunoi H, Rotrosen D, Gallin JI et al (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301

    PubMed  CAS  Google Scholar 

  • Oermann CM, Sockrider MM, Konstan MW (1999) The use of anti-inflammatory medications in cystic fibrosis: trends and physician attitudes. Chest 115:1053–1058

    PubMed  CAS  Google Scholar 

  • Oishi K, Sonoda F, Kobayashi S et al (1994) Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases. Infect Immun 62:4145–4152

    PubMed  CAS  Google Scholar 

  • Okada Y, Nakanishi I (1989) Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (‘gelatinase’) by human neutrophil elastase and cathepsin G. FEBS Lett 249:353–356

    PubMed  CAS  Google Scholar 

  • Olsson I, Gardell S (1967) Isolation and characterization of glycosaminoglycans from human leukocytes and platelets. Biochim Biophys Acta 141:348–357

    PubMed  CAS  Google Scholar 

  • Ottonello L, Cutolo M, Frumento G et al (2002) Synovial fluid from patients with rheumatoid arthritis inhibits neutrophil apoptosis: role of adenosine and proinflammatory cytokines. Rheumatology 41:1249–1260

    PubMed  CAS  Google Scholar 

  • Painter RG, Valentine VG, Lanson NA Jr et al (2006) CFTR expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 45:10260–10269

    PubMed  CAS  Google Scholar 

  • Painter RG, Bonvillain RW, Valentine VG (2008) The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J Leukoc Biol 83:1345–1353

    PubMed  CAS  Google Scholar 

  • Parmley RT, Eguchi M, Spicer SS (1979) Ultrastructural cytochemistry of complex carbohydrates in leukocyte granules. J Histochem Cytochem 27:1167–1170

    PubMed  CAS  Google Scholar 

  • Paul K, Rietschel E, Ballmann M et al (2004) Effect of treatment with dornase alpha on airway inflammation in patients with cystic fibrosis. Am J Respir Crit Care Med 169:719–725

    PubMed  Google Scholar 

  • Pedersen SS, Kharazmi A, Espersen F et al (1990) Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58:3363–3368

    PubMed  CAS  Google Scholar 

  • Petit-Bertron AF, Tabary O, Corvol H et al (2008) Circulating and airway neutrophils in cystic fibrosis display different TLR expression and responsiveness to interleukin-10. Cytokine 41:54–60

    PubMed  CAS  Google Scholar 

  • Pilewski JM (2002) Gene therapy for airway diseases: continued progress toward identifying and overcoming barriers to efficiency. Am J Respir Cell Mol Biol 27:117–121

    PubMed  CAS  Google Scholar 

  • Ramsey BW, Wentz KR, Smith AL et al (1991) Predictive value of oropharyngeal cultures for identifying lower airway bacteria in cystic fibrosis patients. Am Rev Respir Dis 144:331–337

    PubMed  CAS  Google Scholar 

  • Reeves EP, Lu H, Jacobs HL et al (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297

    PubMed  CAS  Google Scholar 

  • Reynolds WF, Patel K, Pianko S et al (2002) A genotypic association implicates myeloperoxidase in the progression of hepatic fibrosis in chronic hepatitis C virus infection. Genes Immun 3:345–349

    PubMed  CAS  Google Scholar 

  • Reynolds WF, Sermet-Gaudelus I, Gausson V et al (2006) Myeloperoxidase promoter polymorphism -463G is associated with more severe clinical expression of cystic fibrosis pulmonary disease. Mediators Inflamm 2006:36735

    PubMed  Google Scholar 

  • Rogan MP, Taggart CC, Greene CM et al (2004) Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis 190:1245–1253

    PubMed  CAS  Google Scholar 

  • Root RK, Rosenthal AS, Balestra DJ (1972) Abnormal bactericidal, metabolic, and lysosomal functions of Chediak–Higashi syndrome leukocytes. J Clin Invest 51:649–665

    PubMed  CAS  Google Scholar 

  • Rosenstein BJ, Eigen H (1991) Risks of alternate-day prednisone in patients with cystic fibrosis. Pediatrics 87:245–246

    PubMed  CAS  Google Scholar 

  • Rossi F (1986) The O2-forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta 853:65–89

    PubMed  CAS  Google Scholar 

  • Rudolph V, Rudolph TK, Kubala L et al (2009) A myeloperoxidase promoter polymorphism is independently associated with mortality in patients with impaired left ventricular function. Free Radic Biol Med 47:1584–1590

    PubMed  CAS  Google Scholar 

  • Russell KJ, McRedmond J, Mukherji N et al (1998) Neutrophil adhesion molecule surface expression and responsiveness in cystic fibrosis. Am J Respir Crit Care Med 157(3 Pt 1):756–761

    PubMed  CAS  Google Scholar 

  • Sagel SD, Kapsner RK, Osberg I (2005) Induced sputum matrix metalloproteinase-9 correlates with lung function and airway inflammation in children with cystic fibrosis. Pediatr Pulmonol 39:224–232

    PubMed  Google Scholar 

  • Saiman L, Marshall BC, Mayer-Hamblett N et al (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290:1749–1756

    PubMed  CAS  Google Scholar 

  • Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362

    PubMed  CAS  Google Scholar 

  • Scheel-Toellner D, Wang K, Craddock R et al (2004) Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood 104:2557–2564

    PubMed  CAS  Google Scholar 

  • Segal AW, Jones OT (1978) Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276:515–517

    PubMed  CAS  Google Scholar 

  • Segal AW, Heyworth PG, Cockcroft S et al (1985) Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein. Nature 316:547–549

    PubMed  CAS  Google Scholar 

  • Seger RA (2008) Modern management of chronic granulomatous disease. Br J Haematol 140:255–266

    PubMed  CAS  Google Scholar 

  • Sela S, Shurtz-Swirski R, Awad J et al (2002) The involvement of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation among cigarette smokers. Isr Med Assoc J 4:1015–1019

    PubMed  Google Scholar 

  • Sela S, Shurtz-Swirski R, Cohen-Mazor M et al (2005) Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J Am Soc Nephrol 16:2431–2438

    PubMed  CAS  Google Scholar 

  • Sener B, Hascelik G, Ozcelik U et al (1999) Neutrophil chemotaxis in acutely infected and clinically stable cystic fibrosis patients. Pediatr Int 41:514–518

    PubMed  CAS  Google Scholar 

  • Shamamian P, Schwartz JD, Pocock BJ et al (2001) Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: a role for inflammatory cells in tumor invasion and angiogenesis. J Cell Physiol 189:197–206

    PubMed  CAS  Google Scholar 

  • Shinkai M, Rubin BK (2005) Macrolides and airway inflammation in children. Paediatr Respir Rev 6:227–235

    PubMed  Google Scholar 

  • Shurtz-Swirski R, Sela S, Herskovits AT et al (2001) Involvement of peripheral polymorphonuclear leukocytes in oxidative stress and inflammation in type 2 diabetic patients. Diabetes Care 24:104–110

    PubMed  CAS  Google Scholar 

  • Smedly LA, Tonnesen MG, Sandhaus RA et al (1986) Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase. J Clin Invest 77:1233–1243

    PubMed  CAS  Google Scholar 

  • Smith RM, Traber LD, Traber DL et al (1989) Pulmonary deposition and clearance of aerosolized alpha-1-proteinase inhibitor administered to dogs and to sheep. J Clin Invest 84:1145–1154

    PubMed  CAS  Google Scholar 

  • Sperling RI, Weinblatt M, Robin JL et al (1987) Effects of dietary supplementation with marine fish oil on leukocyte lipid mediator generation and function in rheumatoid arthritis. Arthritis Rheum 30:988–997

    PubMed  CAS  Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    PubMed  CAS  Google Scholar 

  • Starosta V, Rietschel E, Paul K et al (2006) Oxidative changes of bronchoalveolar proteins in cystic fibrosis. Chest 129:431–437

    PubMed  CAS  Google Scholar 

  • Stoltz DA, Meyerholz DK, Pezzulo AA (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Trans Med 2:29–31

    Google Scholar 

  • Suter S (1989) The imbalance between granulocyte neutral proteases and antiproteases in bronchial secretions from patients with cystic fibrosis. Antibiot Chemother 42:158–168

    PubMed  CAS  Google Scholar 

  • Suter S, Chevallier I (1991) Proteolytic inactivation of alpha 1-proteinase inhibitor in infected bronchial secretions from patients with cystic fibrosis. Eur Respir J 4:40–49

    PubMed  CAS  Google Scholar 

  • Taggart C, Coakley RJ, Greally P et al (2000) Increased elastase release by CF neutrophils is mediated by tumor necrosis factor-alpha and interleukin-8. Am J Physiol Lung Cell Mol Physiol 278:L33–L41

    PubMed  CAS  Google Scholar 

  • Taggart CC, Lowe GJ, Greene CM et al (2001) Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J Biol Chem 276:33345–33352

    PubMed  CAS  Google Scholar 

  • Taggart CC, Greene CM, McElvaney NG et al (2002) Secretory leucoprotease inhibitor prevents lipopolysaccharide-induced IkappaBalpha degradation without affecting phosphorylation or ubiquitination. J Biol Chem 277:33648–33653

    PubMed  CAS  Google Scholar 

  • Taggart CC, Cryan SA, Weldon S et al (2005) Secretory leucoprotease inhibitor binds to NF-kappaB binding sites in monocytes and inhibits p65 binding. J Exp Med 202:1659–1668

    PubMed  CAS  Google Scholar 

  • Thompson AB, Mueller MB, Heires AJ et al (1992) Aerosolized beclomethasone in chronic bronchitis. Improved pulmonary function and diminished airway inflammation. Am Rev Respir Dis 146:389–395

    PubMed  CAS  Google Scholar 

  • Tirouvanziam R, Conrad CK, Bottiglieri T et al (2006) High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci USA 103:4628–4633

    PubMed  CAS  Google Scholar 

  • Tirouvanziam R, Gernez Y, Conrad CK et al (2008) Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc Natl Acad Sci USA 105:4335–4339

    PubMed  CAS  Google Scholar 

  • Todd RF 3rd (1996) The continuing saga of complement receptor type 3 (CR3). J Clin Invest 98:1–2

    PubMed  CAS  Google Scholar 

  • Tomee JF, Hiemstra PS, Heinzel-Wieland R et al (1997) Antileukoprotease: an endogenous protein in the innate mucosal defense against fungi. J Infect Dis 176:740–747

    PubMed  CAS  Google Scholar 

  • Tosi MF, Berger M (1988) Functional differences between the 40 kDa and 50 to 70 kDa IgG Fc receptors on human neutrophils revealed by elastase treatment and antireceptor antibodies. J Immunol 141:2097–2103

    PubMed  CAS  Google Scholar 

  • Tosi MF, Zakem H, Berger M (1990) Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest 86:300–308

    PubMed  CAS  Google Scholar 

  • Travis SM, Conway BA, Zabner J et al (1999) Activity of abundant antimicrobials of the human airway. Am J Respir Cell Mol Biol 20:872–879

    PubMed  CAS  Google Scholar 

  • Tsai WC, Rodriguez ML, Young KS et al (2004) Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am J Respir Crit Care Med 170:1331–1339

    PubMed  Google Scholar 

  • Usher LR, Lawson RA, Geary I et al (2002) Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168:1861–1868

    PubMed  CAS  Google Scholar 

  • Van den Steen PE, Proost P, Wuyts A et al (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 96:2673–2681

    PubMed  Google Scholar 

  • Van Der Vliet A, Nguyen MN, Shigenaga MK et al (2000) Myeloperoxidase and protein oxidation in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 279:L537–L546

    Google Scholar 

  • van Overveld FJ, Demkow UA, Gorecka D et al (2003) Inhibitory capacity of different steroids on neutrophil migration across a bilayer of endothelial and bronchial epithelial cells. Eur J Pharmacol 477:261–267

    PubMed  Google Scholar 

  • Vandivier RW, Fadok VA, Hoffmann PR et al (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109:661–670

    PubMed  CAS  Google Scholar 

  • Vogelmeier C, Buhl R, Hoyt RF et al (1990) Aerosolization of recombinant SLPI to augment antineutrophil elastase protection of pulmonary epithelium. J Appl Physiol 69:1843–1848

    PubMed  CAS  Google Scholar 

  • Watt AP, Courtney J, Moore J et al (2005) Neutrophil cell death, activation and bacterial infection in cystic fibrosis. Thorax 60:659–664

    PubMed  CAS  Google Scholar 

  • Weldon S, McNally P, McElvaney NG et al (2009) Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. J Immunol 183:8148–8156

    PubMed  CAS  Google Scholar 

  • Wiedow O, Harder J, Bartels J et al (1998) Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun 248:904–909

    PubMed  CAS  Google Scholar 

  • Wilmott RW, Kassab JT, Kilian PL et al (1990) Increased levels of interleukin-1 in bronchoalveolar washings from children with bacterial pulmonary infections. Am Rev Respir Dis 142:365–368

    PubMed  CAS  Google Scholar 

  • Wilson R, Sykes DA, Watson D et al (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56:2515–2517

    PubMed  CAS  Google Scholar 

  • Witko-Sarsat V, Allen RC, Paulais M et al (1996) Disturbed myeloperoxidase-dependent activity of neutrophils in cystic fibrosis homozygotes and heterozygotes, and its correction by amiloride. J Immunol 157:2728–2735

    PubMed  CAS  Google Scholar 

  • Witko-Sarsat V, Rieu P, Descamps-Latscha B et al (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    PubMed  CAS  Google Scholar 

  • Worlitzsch D, Herberth G, Ulrich M et al (1998) Catalase, myeloperoxidase and hydrogen peroxide in cystic fibrosis. Eur Respir J 11:377–383

    PubMed  CAS  Google Scholar 

  • Worthen GS, Seccombe JF, Clay KL et al (1988) The priming of neutrophils by lipopolysaccharide for production of intracellular platelet-activating factor. Potential role in mediation of enhanced superoxide secretion. J Immunol 140:3553–3559

    PubMed  CAS  Google Scholar 

  • Yago T, Zarnitsyna VI, Klopocki AG et al (2007) Transport governs flow-enhanced cell tethering through L-selectin at threshold shear. Biophys J 92:330–342

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Taniuchi S, Tsuji S et al (2002) Role of reactive oxygen species in neutrophil apoptosis following ingestion of heat-killed Staphylococcus aureus. Clin Exp Immunol 129:479–484

    PubMed  CAS  Google Scholar 

  • Yanagihara K, Tomono K, Sawai T et al (1997) Effect of clarithromycin on lymphocytes in chronic respiratory Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 155:337–342

    PubMed  CAS  Google Scholar 

  • Yanagihara K, Tomono K, Kuroki M et al (2000a) Intrapulmonary concentrations of inflammatory cytokines in a mouse model of chronic respiratory infection caused by Pseudomonas aeruginosa. Clin Exp Immunol 122:67–71

    PubMed  CAS  Google Scholar 

  • Yanagihara K, Tomono K, Sawai T et al (2000b) Combination therapy for chronic Pseudomonas aeruginosa respiratory infection associated with biofilm formation. J Antimicrob Chemother 46:69–72

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Nakamura H, Trapnell BC et al (1991) Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin. Nucleic Acids Res 19:5417–5423

    PubMed  CAS  Google Scholar 

  • Yuo A, Kitagawa S, Kasahara T et al (1991) Stimulation and priming of human neutrophils by interleukin-8: cooperation with tumor necrosis factor and colony-stimulating factors. Blood 78:2708–2714

    PubMed  CAS  Google Scholar 

  • Zhang Y, DeWitt DL, McNeely TB et al (1997) Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinases. J Clin Invest 99:894–900

    PubMed  CAS  Google Scholar 

  • Zielenski J, Tsui LC (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29:777–807

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Medical Research Charities Group and the Health Research Board, The Children’s Research Centre, Crumlin Hospital, The US Alpha One Foundation and the Program for Research in Third Level Institutes administered by the Higher Education Authority for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emer P. Reeves.

Additional information

N. G. McElvaney and E. P. Reeves share joint senior authorship.

About this article

Cite this article

Hayes, E., Pohl, K., McElvaney, N.G. et al. The Cystic Fibrosis Neutrophil: A Specialized Yet Potentially Defective Cell. Arch. Immunol. Ther. Exp. 59, 97–112 (2011). https://doi.org/10.1007/s00005-011-0113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-011-0113-6

Keywords

Navigation