Skip to main content
Log in

Characterization of stem cells in human airway capable of reconstituting a fully differentiated bronchial epithelium

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The epithelia of the lung are complex structures that play an important role in normal lung physiology and are often involved in the pathophysiology of pulmonary diseases. The dynamics of cell turnover, lineage, and differentiation within these epithelia are complex and poorly understood. We have coupled the technique of retrovirus-mediated gene transfer with a xenograft model of proximal human airway to evaluate pathways of cellular proliferation and differentiation in human bronchial epithelia. Primary isolates of human bronchial epithelial cells (HBECs) were infected with mixtures of recombinant retroviruses expressing different reporter genes and seeded into denuded rat trachea, which were implanted subcutaneously into athymic mice. The HBECs were allowed to regenerate for four weeks in xenografts, which were then explanted. Clonal expansion of individual retrovirus-marked cells in the regenerated human bronchial epithelium was detected as clusters of transgene-expressing cells. Clone size varied with seeding density, resulting in the largest clones comprising 103–104 cells. A substantial number of clones showed transgene expression in basal as well as differentiated columnar cells, a finding that appeared independent of clone size. These studies demonstrate the existence of a cell type within the human bronchial epithelium that is capable of extensive self-renewal and pluripotent development. Further characterization of these potential stem cells will be important in defining pathogenesis of pulmonary diseases and in developing novel approaches to treatment such as gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Engelhardt, J.F., Yankaskas, J.R., Ernst, S.A., Yang, Y., Marino C.R., Boucher, R.C., Cohn, J.A., and Wilson, J.M. (1992).Nature Genet. 2:240–248.

    Article  PubMed  Google Scholar 

  2. Engelhardt, J.F., Zepeda, M., Cohn, J.A., Yankaskas, J.R., and Wilson, J.M. (1994).J. Clin. Invest. 93:737–749.

    PubMed  Google Scholar 

  3. Boat, T.F., Welsh, M.J., and Beaudet, A.L. (1989). InThe Metabolic Basis of Inherited Diseases, (eds.) Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D. (McGraw-Hill, New York), pp. 2649–2480.

    Google Scholar 

  4. Jeffrey, P.K., and Reid, L.M. (1977). InDevelopment of the Lung, (ed.) Hodson, W.A. (Marcel Dekker, New York), pp. 87–134.

    Google Scholar 

  5. Rennard, S.I., Beckmann, J.D. and Robbins, R.A. (1991). InThe Lung: Scientific Foundations, (eds.) Crystal, R.G., et al., (Raven Press, New York), p. 157.

    Google Scholar 

  6. Plopper, C.G., and Hyde, D.M. (1992). InComparative Biology of the Normal Lung, (ed.) Parent, R.A. (CRC Press, Boca Raton, Florida), p. 85.

    Google Scholar 

  7. Lane, B.P., and Gordon, R. (1974).Proc. Soc. Exp. Biol. Med. 145:1139–1144.

    PubMed  Google Scholar 

  8. Chang, L.Y., Wu, R., and Nettesheim, P. (1985).J. Cell. Sci. 74:283–301.

    PubMed  Google Scholar 

  9. Willis, R.A. (1962). InThe Borderland of Embryology and Pathology, 2nd ed., (ed.), Willis, R.A., (Butterworths, Washington), pp. 405–518.

    Google Scholar 

  10. McDowell, E.M., Newkirk, C., and Coleman, B. (1985).Anat. Rec. 214:448–456.

    Article  Google Scholar 

  11. McDowell, E.M., Ben, T., Newkirk, C., Chang, S., and De Luca, L.M. (1987).Am. J. Pathol. 129:511–522.

    PubMed  Google Scholar 

  12. Evans, M.J., Shami, S.G., Cabral-Anderson, L.J., and Dekker, N.P. (1986).Am. J. Pathol. 123:126–133.

    PubMed  Google Scholar 

  13. Snider, G.L., Lucey, E.C., Christensin, T.G., Stone, P.J., Calore, J.D., Catanese, A., and Franzblau, C. (1984).Am. Rev. Respir. Dis. 129:155–160.

    PubMed  Google Scholar 

  14. Donnelley, G.M., Haack, D.G., and Heird, C.S. (1982).Cell Tissue Kinet. 15:119–130.

    PubMed  Google Scholar 

  15. Keenan, K.P., Combs, J.W., and McDowell, E.M. (1982).Virchows Arch Cell Pathol. 41:215–229.

    Google Scholar 

  16. Johnson, N.F., and Hubbs, A.F. (1990).Am. J. Respir. Cell. Mol. Biol. 3:579–585.

    PubMed  Google Scholar 

  17. Keenan, K.P., Wilson, T.S., and McDowell, E.M. (1983).Virchows Arch. Cell Pathol. 43:213–240.

    Google Scholar 

  18. Engelhardt, J.F., Allen, E., and Wilson, J.M. (1991).Proc. Natl. Acad. Sci. U.S.A. 88:11192–11196.

    PubMed  Google Scholar 

  19. Ferry, N., Duplessis, O., Houssin, D., Danos, O., and Heard, J. (1991).Proc. Natl. Acad. Sci. U.S.A. 88:8377–8381.

    PubMed  Google Scholar 

  20. Schreiber, J.H., Schisa, J.A., and Wilson, J.M. (1993).Biotechniques 4 (5):818–823.

    Google Scholar 

  21. Inayama, Y., Hook, G.E., Brody, A.R., Jetten, T.G., Mahler, J., and Nettesheim, P. (1989).Am. J. Pathol. 134:539–549.

    PubMed  Google Scholar 

  22. Goldman, M.J., Yang, Y., and Wilson, J.M. (1995).Nature Genet. 9:126–131.

    Article  PubMed  Google Scholar 

  23. Price, J., Turner, D., and Cepko, C. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:156–160.

    PubMed  Google Scholar 

  24. Michalopoulos, G.K. (1990).FASEB J. 4:176–187.

    PubMed  Google Scholar 

  25. Sell, S. (1990).Cancer Res. 50:3811–3815.

    PubMed  Google Scholar 

  26. Jankowski, J.A., and Wright, N.A. (1992).Semin. Cell Biol. 3:445–456.

    Article  PubMed  Google Scholar 

  27. Potten, C.S. (1973).Cell Tissue Kinet. 7:77–88.

    Google Scholar 

  28. Parkinson, E.K. (1992).Cell Biol. 3:435–444.

    Google Scholar 

  29. Graham, C.J., and Pragnell, I.B. (1992).Cell Biol. 3:423–434.

    Google Scholar 

  30. Smith, S.P., and Yee, G.C. (1992).Pharmacotherapy 12(2 Pt 2):11S-19S.

    PubMed  Google Scholar 

  31. Keller, G., and Snodgrass, R. (1990).J. Exp. Med. 171:1407–1418.

    Article  PubMed  Google Scholar 

  32. Potten, C.S. (1981).Int. Rev. Cytol. 69:271–318.

    PubMed  Google Scholar 

  33. Shimizu, T., Nishihara, M., Kawaguchi, S., and Sakakura, Y. (1994).Am. J. Respir. Cell Mol. Biol. 11:85–94.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zepeda, M.L., Chinoy, M.R. & Wilson, J.M. Characterization of stem cells in human airway capable of reconstituting a fully differentiated bronchial epithelium. Somat Cell Mol Genet 21, 61–73 (1995). https://doi.org/10.1007/BF02255823

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255823

Keywords

Navigation