Skip to main content

Use of Primary Cultures of Human Bronchial Epithelial Cells Isolated from Cystic Fibrosis Patients for the Pre-clinical Testing of CFTR Modulators

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

The use of human bronchial epithelial (HBE) cell cultures derived from the bronchi of CF patients offers the opportunity to study the effects of CFTR correctors and potentiators on CFTR function and epithelial cell biology in the native pathological environment. Cultured HBE cells derived from CF patients exhibit many of the morphological and functional characteristics believed to be associated with CF airway disease in vivo, including abnormal ion and fluid transport leading to dehydration of the airway surface and the loss of cilia beating. In addition, they can be generated in sufficient quantities to support routine lab testing of compound potency and efficacy and retain reproducible levels of CFTR function over time. Here we describe the development and validation of the CF HBE pharmacology model and its use to characterize, optimize, and select clinical candidates. It is expected that the pre-clinical testing of CFTR potentiators and correctors using epithelial cell cultures derived from CF patients will help to increase their likelihood of clinical efficacy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A. et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  2. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z. et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  3. Berger, H. A., Anderson, M. P., Gregory, R. J., Thompson, S., Howard, P. W., Maurer, R. A. et al. (1991) Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J. Clin. Invest. 88, 1422–1431.

    Article  PubMed  CAS  Google Scholar 

  4. Knowles, M., Gatzy, J., and Boucher, R. (1983) Relative ion permeability of normal and cystic fibrosis nasal epithelium. J. Clin. Invest. 71, 1410–1417.

    Article  PubMed  CAS  Google Scholar 

  5. Li, C., Ramjeesingh, M., Wang, W., Garami, E., Hewryk, M., Lee, D. et al. (1996) ATPase activity of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 271, 28463–28468.

    Article  PubMed  CAS  Google Scholar 

  6. Quinton, P. M. (1983) Chloride impermeability in cystic fibrosis. Nature 301, 421–422.

    Article  PubMed  CAS  Google Scholar 

  7. Welsh, M. J., and Smith, A. E. (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254.

    Article  PubMed  CAS  Google Scholar 

  8. Van Goor, F., Hadida, S., Grootenhuis, P. D., Burton, B., Cao, D., Neuberger, T. et al. (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA 106, 18825–18830.

    Article  PubMed  Google Scholar 

  9. Van Goor, F., Hadida, S., and Grootenhuis, P. D. J. (2008) Pharmacological Rescue of mutant CFTR function for the treatment of cystic fibrosis. Top. Medic. Chem. 3, 29.

    Google Scholar 

  10. Van Goor, F., Straley, K. S., Cao, D., Gonzalez, J., Hadida, S., Hazlewood, A. et al. (2006) Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L1117–1130.

    Article  Google Scholar 

  11. Pedemonte, N., Lukacs, G. L., Du, K., Caci, E., Zegarra-Moran, O., Galietta, L. J. et al. (2005) Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest. 115, 2564–2571.

    Article  PubMed  CAS  Google Scholar 

  12. Boucher, R. C. (2007) Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol. Med. 13, 231–240.

    Article  PubMed  CAS  Google Scholar 

  13. Jiang, C., Finkbeiner, W. E., Widdicombe, J. H., McCray, P. B., Jr., and Miller, S. S. (1993) Altered fluid transport across airway epithelium in cystic fibrosis. Science 262, 424–427.

    Article  PubMed  CAS  Google Scholar 

  14. Sisson, J. H., Stoner, J. A., Ammons, B. A., and Wyatt, T. A. (2003) All-digital image capture and whole-field analysis of ciliary beat frequency. J. Microsc. 211, 103–111.

    Article  PubMed  CAS  Google Scholar 

  15. Gibson, R. L., Burns, J. L., and Ramsey, B. W. (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168, 918–951.

    Article  PubMed  Google Scholar 

  16. Souma, T. (1987) The distribution and surface ultrastructure of airway epithelial cells in the rat lung: a scanning electron microscopic study. Arch. Histol. Jpn. 50, 419–436.

    Article  PubMed  CAS  Google Scholar 

  17. Knowles, M. R., Paradiso, A. M., and Boucher, R. C. (1995) In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum. Gene Ther. 6, 445–455.

    Article  PubMed  CAS  Google Scholar 

  18. Ahrens, R. C., Standaert, T. A., Launspach, J., Han, S. H., Teresi, M. E., Aitken, M. L. et al. (2002) Use of nasal potential difference and sweat chloride as outcome measures in multicenter clinical trials in subjects with cystic fibrosis. Pediatr. Pulmonol. 33, 142–150.

    Article  PubMed  Google Scholar 

  19. Blouquit, S., Sari, A., Lombet, A., D’Herbomez, M., Naline, E., Matran, R. et al. (2003) Effects of endothelin-1 on epithelial ion transport in human airways. Am. J. Respir. Cell. Mol. Biol. 29, 245–251.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrick Van Goor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Neuberger, T., Burton, B., Clark, H., Van Goor, F. (2011). Use of Primary Cultures of Human Bronchial Epithelial Cells Isolated from Cystic Fibrosis Patients for the Pre-clinical Testing of CFTR Modulators. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics