Skip to main content

Vascular Consequences of Intermittent Hypoxia

  • Conference paper
Book cover Hypoxia and the Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 618))

Abstract

In patients with obstructive sleep apnea (OSA), nocturnal exposure to intermittent hypoxia causes elevations in arterial pressure that persist throughout the day. Animal models have shown that this hypertensive effect requires an intact sympathetic nervous system and an intact carotid chemoreceptor reflex. The reninangiotensin system contributes importantly to hypertension in this model, because renal nerve denervation, angiotensin II receptor blockade, and suppression of the renin-angiotensin system by high salt diet all prevent the rise in blood pressure. The vascular endothelium is functionally impaired in this model and also in patients with OSA. These individuals demonstrate decreased plasma levels of nitric oxide metabolites, increased production of superoxide by neutrophils, and increased levels of 8-isoprostane in breath condensate. Increased levels of pro-in- flammatory cytokines are also present. Thus, oxidant stress and inflammation are potential mediators of intermittent hypoxia-induced vascular dysfunction. Once the mechanisms of intermittent hypoxia-induced alterations in vascular structure and function are understood, strategies can be developed to reverse or prevent them. Such research has relevance not only to hypertension, but also to atherosclerosis and other important cardiovascular sequelae of OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allahdadi KJ, Walker BR and Kanagy NL. Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension45:705-709, 2005.

    CAS  PubMed  Google Scholar 

  2. Biesold D, Kurosawa M, Sato A and Trzebski A. Hypoxia and hypercapnia increase the sympathoadrenal medullary functions in anesthetized, artificially ventilated rats. Jpn J Physiol39:511-522, 1989.

    CAS  PubMed  Google Scholar 

  3. Bisgard GE. Carotid body mechanisms in acclimatization to hypoxia. Respir Physiol 121:237-246, 2000.

    CAS  PubMed  Google Scholar 

  4. Bleeke T, Zhang H, Madamanchi N, Patterson C and Faber JE. Catecholamineinduced vascular wall growth is dependent on generation of reactive oxygen species. Circ Res94:37-45, 2004.

    CAS  PubMed  Google Scholar 

  5. Brooks D, Horner RL, Kozar LF, Render-Teixeira CL and Phillipson EA. Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J Clin Invest99:106-109, 1997.

    CAS  PubMed  Google Scholar 

  6. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J and Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest 103:1763-1768, 1993.

    CAS  PubMed  Google Scholar 

  7. Carmeliet P and Jain RK. Angiogenesis in cancer and other diseases. Nature407:249-257, 2000.

    CAS  PubMed  Google Scholar 

  8. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E and Barnes PJ.8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest124:1386-1392, 2003.

    CAS  PubMed  Google Scholar 

  9. Caudill TK, Resta TC, Kanagy NL and Walker BR. Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia. Am J Physiol275: R1025-R1030, 1998.

    CAS  PubMed  Google Scholar 

  10. Chen J, He L, Dinger B and Fidone S. Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides. Respir Physiol121:13-23, 2000.

    CAS  PubMed  Google Scholar 

  11. Chen J, He L, Dinger B, Stensaas L and Fidone S. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol282: L1314-L1323, 2002.

    CAS  PubMed  Google Scholar 

  12. Cutler MJ, Swift NM, Keller DM, Wasmund WL and Smith ML. Hypoxia-mediated prolonged elevation of sympathetic nerve activity after periods of intermittent hypoxic apnea. J Appl Physiol96:754-761, 2004.

    PubMed  Google Scholar 

  13. Dick TE, Hsieh YH, Wang N and Prabhakar N. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol92:87-97, 2007.

    PubMed  Google Scholar 

  14. Doyle MP and Walker BR. Attentuation of systemic vasoreactivity in chronically hypoxic rats. Am J Physiol260: R1114-R1122, 1991.

    CAS  PubMed  Google Scholar 

  15. Duyndam MC, Hulscher TM, Fontijn D, Pinedo HM and Boven E. Induction of vascular endothelial growth factor expression and hypoxia-inducible factor 1alpha protein by the oxidative stressor arsenite. J Biol Chem276:48066-48076, 2001.

    CAS  PubMed  Google Scholar 

  16. Dzau VJ. Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension37:1047-1052, 2001.

    CAS  PubMed  Google Scholar 

  17. Earley S, Naik JS and Walker BR. 48-h Hypoxic exposure results in endotheliumdependent systemic vascular smooth muscle cell hyperpolarization. Am J Physiol Regul Integr Comp Physiol283: R79-R85, 2002.

    CAS  PubMed  Google Scholar 

  18. Earley S, Pastuszyn A and Walker BR. Cytochrome p-450 epoxygenase products contribute to attenuated vasoconstriction after chronic hypoxia. Am J Physiol Heart Circ Physiol285: H127-H136, 2003.

    CAS  PubMed  Google Scholar 

  19. Earley S and Walker BR. Endothelium-dependent blunting of myogenic responsiveness after chronic hypoxia. Am J Physiol Heart Circ Physiol283: H2202-H2209, 2002.

    CAS  PubMed  Google Scholar 

  20. Earley S and Walker BR. Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction. Am J Physiol Heart Circ Physiol 284: H1655-H1661, 2003.

    CAS  PubMed  Google Scholar 

  21. El Solh AA, Saliba R, Bosinski T, Grant BJ, Berbary E and Miller N. Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study. Eur Respir J27:997-1002, 2006.

    CAS  PubMed  Google Scholar 

  22. Fletcher EC, Bao G and Li R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension34:309-314, 1999.

    CAS  PubMed  Google Scholar 

  23. Fletcher EC, Lesske J, Culman J, Miller CC and Unger T. Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension20:612-619, 1992.

    CAS  PubMed  Google Scholar 

  24. Fletcher EC, Lesske J, Qian W, Miller CC, III and Unger T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension19:555-561, 1992.

    Google Scholar 

  25. Fletcher EC, Orolinova N and Bader M. Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol92:627-633, 2002.

    CAS  PubMed  Google Scholar 

  26. Foster GE, Hanly PJ, Ostrowski M and Poulin MJ. Effects of CPAP on Cerebral Vascular Response to Hypoxia in Obstructive Sleep Apnea Patients. Am J Respir Crit Care Med2007.

    Google Scholar 

  27. Fredricks KT, Liu Y and Lombard JH. Response of extraparenchymal resistance arteries of rat skeletal muscle to reduced PO2. Am J Physiol267: H706-H715, 1994.

    CAS  PubMed  Google Scholar 

  28. Frisbee JC, Maier KG, Falck JR, Roman RJ and Lombard JH. Integration of hypoxic dilation signaling pathways for skeletal muscle resistance arteries. Am J Physiol Regul Integr Comp Physiol283: R309-R319, 2002.

    CAS  PubMed  Google Scholar 

  29. Frisbee JC, Roman RJ, Murali KU, Falck JR and Lombard JH. Altered mechanisms underlying hypoxic dilation of skeletal muscle resistance arteries of hypertensive versus normotensive Dahl rats. Microcirculation8:115-127, 2001.

    CAS  PubMed  Google Scholar 

  30. Gerasimovskaya EV, Ahmad S, White CW, Jones PL, Carpenter TC and Stenmark KR. Extracellular ATP is an autocrine/paracrine regulator of hypoxia-induced adventitial fibroblast growth. Signaling through extracellular signal-regulated kinase-1/2 and the Egr-1 transcription factor. J Biol Chem277:44638-44650, 2002.

    CAS  PubMed  Google Scholar 

  31. Gilmartin G, Tamisier R, Anand A, Cunnington D and Weiss JW. Evidence of impaired hypoxic vasodilation after intermediate-duration hypoxic exposure in humans. Am J Physiol Heart Circ Physiol291: H2173-H2180, 2006.

    CAS  PubMed  Google Scholar 

  32. Gladwin MT. Role of the red blood cell in nitric oxide homeostasis and hypoxic vasodilation. Adv Exp Med Biol588:189-205, 2006.

    PubMed  Google Scholar 

  33. Goerre S, Wenk M, Bartsch P, Luscher TF, Niroomand F, Hohenhaus E, Oelz O and Reinhart WH. Endothelin-1 in pulmonary hypertension associated with high-altitude exposure. Circulation91:359-364, 1995.

    CAS  PubMed  Google Scholar 

  34. Gonzales RJ and Walker BR. Role of CO in attenuated vasoconstrictor reactivity of mesenteric resistance arteries after chronic hypoxia. Am J Physiol Heart Circ Physiol 282: H30-H37, 2002.

    CAS  PubMed  Google Scholar 

  35. Gonzalez NC, Allen J, Schmidt EJ, Casillan AJ, Orth T and Wood JG. Role of the renin-angiotensin system in the systemic microvascular inflammation of alveolar hypoxia. Am J Physiol Heart Circ Physiol2007.

    Google Scholar 

  36. Greenberg HE, Sica A, Batson D and Scharf SM. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol86:298-305, 1999.

    CAS  PubMed  Google Scholar 

  37. Grote L, Kraiczi H and Hedner J. Reduced alpha-and beta(2)-adrenergic vascular response in patients with obstructive sleep apnea. Am J Respir Crit Care Med162:1480-1487, 2000.

    CAS  PubMed  Google Scholar 

  38. Hansen J and Sander M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol546:921-929, 2003.

    CAS  PubMed  Google Scholar 

  39. Hedner J, Ejnell H, Sellgren J, Hedner T and Wallin G. Is high and fluctuating muscle nerve sympathetic activity in the sleep apnoea syndrome of pathogenetic importance for the development of hypertension? J Hypertens Suppl6: S529-S531, 1988.

    CAS  PubMed  Google Scholar 

  40. Heindl S, Lehnert M, Criee CP, Hasenfuss G and Andreas S. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164:597-601, 2001.

    CAS  PubMed  Google Scholar 

  41. Heistad DD, Abboud FM, Mark AL and Schmid PG. Impaired reflex vasoconstriction in chronically hypoxemic patients. J Clin Invest51:331-337, 1972.

    CAS  PubMed  Google Scholar 

  42. Hirakawa H, Nakamura T and Hayashida Y. Effect of carbon dioxide on autonomic cardiovascular responses to systemic hypoxia in conscious rats. Am J Physiol273: R747-R754, 1997.

    CAS  PubMed  Google Scholar 

  43. Ip MS, Lam B, Chan LY, Zheng L, Tsang KW, Fung PC and Lam WK. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med162:2166-2171, 2000.

    CAS  PubMed  Google Scholar 

  44. Ip MS, Tse HF, Lam B, Tsang KW and Lam WK. Endothelial function in obstructive sleep apnea and response to treatment. Am J Respir Crit Care Med169:348-353, 2004.

    PubMed  Google Scholar 

  45. Jacob MP, Badier-Commander C, Fontaine V, Benazzoug Y, Feldman L and Michel JB. Extracellular matrix remodeling in the vascular wall. Pathol Biol (Paris)49:326-332, 2001.

    CAS  Google Scholar 

  46. Kanagy NL, Walker BR and Nelin LD. Role of endothelin in intermittent hypoxiainduced hypertension. Hypertension37:511-515, 2001.

    CAS  PubMed  Google Scholar 

  47. Kato M, Roberts-Thomson P, Phillips BG, Haynes WG, Winnicki M, Accurso V and Somers VK. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation102:2607-2610, 2000.

    CAS  PubMed  Google Scholar 

  48. Kraiczi H, Caidahl K, Samuelsson A, Peker Y and Hedner J. Impairment of vascular endothelial function and left ventricular filling : association with the severity of apnea-induced hypoxemia during sleep. Chest119:1085-1091, 2001.

    CAS  PubMed  Google Scholar 

  49. Kraiczi H, Hedner J, Peker Y and Carlson J. Increased vasoconstrictor sensitivity in obstructive sleep apnea. J Appl Physiol89:493-498, 2000.

    CAS  PubMed  Google Scholar 

  50. Kumar GK, Rai V, Sharma SD, Ramakrishnan DP, Peng YJ, Souvannakitti D and Prabhakar NR. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol575:229-239, 2006.

    CAS  PubMed  Google Scholar 

  51. Lam SY, Fung ML and Leung PS. Regulation of the angiotensin-converting enzyme activity by a time-course hypoxia in the carotid body. J Appl Physiol96:809-813, 2004.

    CAS  PubMed  Google Scholar 

  52. Lam SY and Leung PS. A locally generated angiotensin system in rat carotid body. Regul Pept107:97-103, 2002.

    CAS  PubMed  Google Scholar 

  53. Lattimore JL, Wilcox I, Skilton M, Langenfeld M and Celermajer DS. Treatment of obstructive sleep apnoea leads to improved microvascular endothelial function in the systemic circulation. Thorax61:491-495, 2006.

    CAS  PubMed  Google Scholar 

  54. Lawrence DL, Skatrud JB and Shenker Y. Effect of hypoxia on atrial natriuretic factor and aldosterone regulation in humans. Am J Physiol258: E243-E248, 1990.

    CAS  PubMed  Google Scholar 

  55. Lesske J, Fletcher EC, Bao G and Unger T. Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens15:1593-1603, 1997.

    CAS  PubMed  Google Scholar 

  56. Leuenberger U, Jacob E, Sweer L, Waravdekar N, Zwillich C and Sinoway L. Surges of muscle sympathetic nerve activity during obstructive apnea are linked to hypoxemia. J Appl Physiol79:581-588, 1995.

    CAS  PubMed  Google Scholar 

  57. Liu JL, Murakami H and Zucker IH. Angiotensin II-nitric oxide interaction on sympathetic outflow in conscious rabbits. Circ Res82:496-502, 1998.

    CAS  PubMed  Google Scholar 

  58. Logan AG, Perlikowski SM, Mente A, Tisler A, Tkacova R, Niroumand M, Leung RS and Bradley TD. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens19:2271-2277, 2001.

    CAS  PubMed  Google Scholar 

  59. Minoguchi K, Yokoe T, Tazaki T, Minoguchi H, Tanaka A, Oda N, Okada S, Ohta S, Naito H and Adachi M. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med172:625-630, 2005.

    PubMed  Google Scholar 

  60. Moller DS, Lind P, Strunge B and Pedersen EB. Abnormal vasoactive hormones and 24-hour blood pressure in obstructive sleep apnea. Am J Hypertens16:274-280, 2003.

    CAS  PubMed  Google Scholar 

  61. Morgan BJ, Crabtree DC, Palta M and Skatrud JB. Combined hypoxia and hypercapnia evokes long-lasting sympathetic activation in humans. J Appl Physiol 79:205-213, 1995.

    CAS  PubMed  Google Scholar 

  62. Morgan BJ, Denahan T and Ebert TJ. Neurocirculatory consequences of negative intrathoracic pressure vs. asphyxia during voluntary apnea. J Appl Physiol74:2969-2975, 1993.

    CAS  PubMed  Google Scholar 

  63. Naik JS and Walker BR. Role of vascular heme oxygenase in reduced myogenic reactivity following chronic hypoxia. Microcirculation13:81-88, 2006.

    CAS  PubMed  Google Scholar 

  64. Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG and Somers VK. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation97:943-945, 1998.

    CAS  PubMed  Google Scholar 

  65. Nieto FJ, Herrington DM, Redline S, Benjamin EJ and Robbins JA. Sleep apnea and markers of vascular endothelial function in a large community sample of older adults. Am J Respir Crit Care Med169:354-360, 2004.

    PubMed  Google Scholar 

  66. O’Donaughy TL and Walker BR. Renal vasodilatory influence of endogenous carbon monoxide in chronically hypoxic rats. Am J Physiol Heart Circ Physiol279: H2908-H2915, 2000.

    PubMed  Google Scholar 

  67. Oskarsson HJ and Heistad DD. Oxidative stress produced by angiotensin too. Implications for hypertension and vascular injury. Circulation95:557-559, 1997.

    CAS  PubMed  Google Scholar 

  68. Peng YJ, Overholt JL, Kline D, Kumar GK and Prabhakar NR. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A100:10073-10078, 2003.

    CAS  PubMed  Google Scholar 

  69. Peng YJ and Prabhakar NR. Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol94:2342-2349, 2003.

    CAS  PubMed  Google Scholar 

  70. Peppard PE, Young T, Palta M and Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med342:1378-1384, 2000.

    CAS  PubMed  Google Scholar 

  71. Phillips BG, Narkiewicz K, Pesek CA, Haynes WG, Dyken ME and Somers VK. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J Hypertens 17:61-66, 1999.

    CAS  PubMed  Google Scholar 

  72. Phillips C, Hedner J, Berend N and Grunstein R. Diurnal and obstructive sleep apnea influences on arterial stiffness and central blood pressure in men. Sleep28:604-609, 2005.

    PubMed  Google Scholar 

  73. Phillips SA, Olson EB, Lombard JH and Morgan BJ. Chronic intermittent hypoxia alters NE reactivity and mechanics of skeletal muscle resistance arteries. J Appl Physiol100:1117-1123, 2006.

    CAS  PubMed  Google Scholar 

  74. Phillips SA, Olson EB, Morgan BJ and Lombard JH. Chronic intermittent hypoxia impairs endothelium-dependent dilation in rat cerebral and skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol286: H388-H393, 2004.

    CAS  PubMed  Google Scholar 

  75. Prabhakar NR and Jacono FJ. Cellular and molecular mechanisms associated with carotid body adaptations to chronic hypoxia. High Alt Med Biol6:112-120, 2005.

    PubMed  Google Scholar 

  76. Prabhakar NR and Kumar GK. Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biol Chem385:217-221, 2004.

    CAS  PubMed  Google Scholar 

  77. Prabhakar NR, Peng YJ, Jacono FJ, Kumar GK and Dick TE. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol32:447-449, 2005.

    CAS  PubMed  Google Scholar 

  78. Ray CJ, Abbas MR, Coney AM and Marshall JM. Interactions of adenosine, prostaglandins and nitric oxide in hypoxia-induced vasodilatation: in vivo and in vitro studies. J Physiol544:195-209, 2002.

    CAS  PubMed  Google Scholar 

  79. Remsburg S, Launois SH and Weiss JW. Patients with obstructive sleep apnea have an abnormal peripheral vascular response to hypoxia. J Appl Physiol87:1148-1153, 1999.

    CAS  PubMed  Google Scholar 

  80. Rowell LB, Johnson DG, Chase PB, Comess KA and Seals DR. Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. J Appl Physiol66:1736-1743, 1989.

    CAS  PubMed  Google Scholar 

  81. Saito M, Mano T, Iwase S, Koga K, Abe H and Yamazaki Y. Responses in muscle sympathetic activity to acute hypoxia in humans. J Appl Physiol65:1548-1552, 1988.

    CAS  PubMed  Google Scholar 

  82. Schulz R, Mahmoudi S, Hattar K, Sibelius U, Olschewski H, Mayer K, Seeger W and Grimminger F. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med162:566-570, 2000.

    CAS  PubMed  Google Scholar 

  83. Shamsuzzaman AS, Winnicki M, Lanfranchi P, Wolk R, Kara T, Accurso V and Somers VK. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation105:2462-2464, 2002.

    CAS  PubMed  Google Scholar 

  84. Sica AL, Greenberg HE, Ruggiero DA and Scharf SM. Chronic-intermittent hypoxia: a model of sympathetic activation in the rat. Respir Physiol121:173-184, 2000.

    CAS  PubMed  Google Scholar 

  85. Steiner DR, Gonzalez NC and Wood JG. Interaction between reactive oxygen species and nitric oxide in the microvascular response to systemic hypoxia. J Appl Physiol 93:1411-1418, 2002.

    CAS  PubMed  Google Scholar 

  86. Stenmark KR, Gerasimovskaya E, Nemenoff RA and Das M. Hypoxic activation of adventitial fibroblasts: role in vascular remodeling. Chest122: 326S-334S, 2002.

    Google Scholar 

  87. Sun MK and Reis DJ. Evidence nitric oxide mediates the vasodepressor response to hypoxia in sino-denervated rats. Life Sci50:555-565, 1992.

    CAS  PubMed  Google Scholar 

  88. Sun SY, Wang W, Zucker IH and Schultz HD. Enhanced peripheral chemoreflex function in conscious rabbits with pacing-induced heart failure. J Appl Physiol86:1264-1272, 1999.

    CAS  PubMed  Google Scholar 

  89. Sun TB, Yang CC, Lai CJ and Kuo TB. Time course of cardiovascular neural regulation during programmed 20-sec apnea in rats. Crit Care Med34:765-770, 2006.

    PubMed  Google Scholar 

  90. Tahawi Z, Orolinova N, Joshua IG, Bader M and Fletcher EC. Altered vascular reactivity in arterioles of chronic intermittent hypoxic rats. J Appl Physiol90:2007-2013, 2001.

    CAS  PubMed  Google Scholar 

  91. Tamisier R, Anand A, Nieto LM, Cunnington D and Weiss JW. Arterial pressure and muscle sympathetic nerve activity are increased after two hours of sustained but not cyclic hypoxia in healthy humans. J Appl Physiol98:343-349, 2005.

    PubMed  Google Scholar 

  92. Tanriverdi H, Evrengul H, Kara CO, Kuru O, Tanriverdi S, Ozkurt S, Kaftan A and Kilic M. Aortic stiffness, flow-mediated dilatation and carotid intima-media thickness in obstructive sleep apnea: non-invasive indicators of atherosclerosis. Respiration73:741-750, 2006.

    PubMed  Google Scholar 

  93. Touyz RM. Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr Opin Nephrol Hypertens14:125-131, 2005.

    Article  CAS  PubMed  Google Scholar 

  94. Tulis DA and Prewitt RL. Medial and endothelial platelet-derived growth factor A chain expression is regulated by in vivo exposure to elevated flow. J Vasc Res35:413-420, 1998.

    CAS  PubMed  Google Scholar 

  95. Vaziri ND and Wang ZQ. Sustained systemic arterial hypertension induced by extended hypobaric hypoxia. Kidney Int49:1457-1463, 1996.

    CAS  PubMed  Google Scholar 

  96. Weisbrod CJ, Minson CT, Joyner MJ and Halliwill JR. Effects of regional phentolamine on hypoxic vasodilatation in healthy humans. J Physiol537:613-621, 2001.

    CAS  PubMed  Google Scholar 

  97. Weiss JW, Liu MD and Huang J. Sleep Apnoea & Hypertension: Physiological bases for a causal relation: Physiological basis for a causal relationship of obstructive sleep apnoea to hypertension. Exp Physiol92:21-26, 2007.

    CAS  PubMed  Google Scholar 

  98. Williams AJ, Houston D, Finberg S, Lam C, Kinney JL and Santiago S. Sleep apnea syndrome and essential hypertension. Am J Cardiol55:1019-1022, 1985.

    CAS  PubMed  Google Scholar 

  99. Wilson E, Mai Q, Sudhir K, Weiss RH and Ives HE. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol123:741-747, 1993.

    CAS  PubMed  Google Scholar 

  100. Wolfel EE, Selland MA, Mazzeo RS and Reeves JT. Systemic hypertension at 4,300 m is related to sympathoadrenal activity. J Appl Physiol76:1643-1650, 1994.

    CAS  PubMed  Google Scholar 

  101. Xie A, Skatrud JB, Crabtree DC, Puleo DS, Goodman BM and Morgan BJ. Neurocirculatory consequences of intermittent asphyxia in humans. J Appl Physiol 89:1333-1339, 2000.

    CAS  PubMed  Google Scholar 

  102. Xie A, Skatrud JB, Puleo DS and Morgan BJ. Exposure to hypoxia produces longlasting sympathetic activation in humans. J Appl Physiol91:1555-1562, 2001.

    CAS  PubMed  Google Scholar 

  103. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, Hirano T and Adachi M. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation107:1129-1134, 2003.

    CAS  PubMed  Google Scholar 

  104. Yu HJ, Lin BR, Lee HS, Shun CT, Yang CC, Lai TY, Chien CT and Hsu SM. Sympathetic vesicovascular reflex induced by acute urinary retention evokes proinflammatory and proapoptotic injury in rat liver. Am J Physiol Renal Physiol 288: F1005-F1014, 2005.

    CAS  PubMed  Google Scholar 

  105. Zhao Q, Ishibashi M, Hiasa K, Tan C, Takeshita A and Egashira K. Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension44:264-270, 2004.

    CAS  PubMed  Google Scholar 

  106. Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR and Davisson RL. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res91:1038-1045, 2002.

    CAS  PubMed  Google Scholar 

  107. Zucker IH. Brain angiotensin II: new insights into its role in sympathetic regulation. Circ Res90:503-505, 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Morgan, B.J. (2007). Vascular Consequences of Intermittent Hypoxia. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_6

Download citation

Publish with us

Policies and ethics