Table S1. Molecular mechanism of cellular transition | MECHANISM | CELLULAR
EFFECT | MODEL | REFERENCE | |--------------------------|--|--|--| | KL-6 (inhibition of HGF) | differentiation of fibroblast stimulation of collagen III and V | human
embryonic
lung fibroblasts | KL-6 regulated the expression of HGF, collagen and myofibroblast differentiation. | | LPA1 | differentiation of blood
mesenchymal stem
cells | bleomycin | Lysophosphatidic acid accelerates lung fibrosis by inducing differentiation of mesenchymal stem cells into myofibroblasts. | | IGF-1 | differentiation of fibroblasts | bleomycin | Role of IGF-1 pathway in lung fibroblast activation. | | microRNA-21 | EMT | bleomycin/
murine
epithelial cells | The increase of microRNA-21 during lung fibrosis and its contribution to epithelialmesenchymal transition in pulmonary epithelial cells. | | NOX-4 | differentiation of
fibroblasts | bleomycin/
human lung
fibroblasts | An Inhibitor of NADPH Oxidase-
4 Attenuates Established
Pulmonary Fibrosis in a Rodent
Disease Model. | | LPA2 | differentiation of
fibroblasts and
apoptosis of alveolar
and bronchial epithelial
cells | bleomycin/
human lung
fibroblasts | Lysophosphatidic Acid Receptor-
2 Deficiency Confers Protection
against Bleomycin-Induced Lung
Injury and Fibrosis in Mice. | | Oncostatin M | gel contraction,
chemotaxis, and α-
SMA expression of
fibroblasts | human lung
fibroblasts | Oncostatin M modulates fibroblast function via signal transducers and activators of transcription proteins-3. | | Adrenomedullin | attenuates expression of SMA, collagen-1, fibronectin, gel contractility in predifferentiated myofibroblasts. No effect on initial differentiation of quiescent fibroblasts in response to TGF-β | bleomycin/
human lung
fibroblast | Regulation of myofibroblast differentiation and bleomycininduced pulmonary fibrosis by adrenomedullin. | | mDia2 | differentiation of fibroblasts | human lung
fibroblasts | Control of myofibroblast differentiation by microtubule dynamics through a regulated localization of mDia2. | |--|---|--|---| | 25-
hydroxycholester
ol/NF-kB | differentiation of
fibroblasts | human fetal
lung fibroblasts | 25-hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway. | | focal adhesion
kinase-related
nonkinase
(FRNK) | reduces fibroblast
migration and
differentiation | mouse model | FAK-related nonkinase is a multifunctional negative regulator of pulmonary fibrosis. | | PGE2 | reversal of
myofibroblasts
differentiation, collagen
I expression and α-
SMA expression | Fetal and adult lung fibroblasts induced to differentiate into myofibroblasts by transforming growth factor (TGF)-\(\beta\)1 or endothelin-1 | Reversal of myofibroblast differentiation by prostaglandin E(2). | | Mitogen-activated
protein kinase-
activated protein
kinase-2
(MAPKAPK2, or
MK2) | myofibroblast differentiation, the secretion of collagen type I, fibronectin, and the activation of focal adhesion kinase | bleomycin | Peptide-mediated inhibition of mitogen-activated protein kinase-activated protein kinase-2 ameliorates bleomycin-induced pulmonary fibrosis. | | miR-199a-
5p/caveolin 1 | increased in myofibroblasts from injured mouse lungs and fibroblastic foci, induces fibroblasts proliferation, migration, invasion, and differentiation | murine lung
fibroblast | miR-199a-5p Is upregulated
during fibrogenic response to
tissue injury and mediates
TGFbeta-induced lung fibroblast
activation by targeting caveolin-1. | | miR-145 | miR-145 deficiency
diminishes TGF-β1
induced α-SMA
expression. miR-145(-/-
) mice are protected
from bleomycin-
induced pulmonary
fibrosis | miR-145(-/-)
mice /murine
lung fibroblasts | miR-145 regulates myofibroblast differentiation and lung fibrosis. | | Rho/Rho kinase
(Rho/ROCK) | myofibroblasts survival | bleomycin/
human lung
fibroblasts | Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. | | TGF beta/smad2 | pleural mesothelial cell
differentiation into
myofibroblasts | Human pleural
mesothelial
cells | Pleural mesothelial cell
transformation into
myofibroblasts and haptotactic
migration in response to TGF-β1
in vitro | |---|--|--|--| | ΡΙ3Κ p110γ | fibroblasts proliferation rate and α-SMA expression | IPF fibroblasts | PI3K p110γ overexpression in idiopathic pulmonary fibrosis lung tissue and fibroblast cells: in vitro effects of its inhibition. | | Glycogen
synthase kinase-3
(GSK-3) | stimulates TGF-β1-
induced myofibroblast
differentiation of
fibroblasts | primary human
lung fibroblasts | Glycogen synthase kinase-3 (GSK-3) regulates TGF-β1- induced differentiation of pulmonary fibroblasts. | | HIF1α, LDH5, lactic acid | fibroblast
differentiation (TGF
dependent) | human lung
fibroblasts | Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. | | hedgehog
pathway | fibroblasts
differentiation (TGF
dependent) | normal and IPF
fibroblasts | The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. | | ET-1/FAK axis | myofibroblasts
formation | bleomycin/
murine lung
fibroblasts | Adenoviral gene transfer of endothelin-1 in the lung induces pulmonary fibrosis through the activation of focal adhesion kinase. | | neuronal Wiskott-
Aldrich syndrome
protein (N-
WASP) | maturation of α-SMA-
containing cytoplasmic
filaments | primary human
lung fibroblasts | Neuronal Wiskott-Aldrich
syndrome protein (N-WASP) is
critical for formation of α-smooth
muscle actin filaments during
myofibroblast differentiation. | | nuclear factor
erythroid 2-
related factor 2
(Nrf2) | dedifferentiation of myofibroblasts | normal and IPF
fibroblasts | Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis. | | Galectin-3 | EMT and fibroblasts differentiation | galectin-3-/- mice/ murine Primary Lung Fibroblasts and Primary Type II AECs | Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. | | CCR2 ligand chemokine | fibrocyte proliferation,
differentiation into
myofibroblasts and
chemotactic response | human and
murine
fibrocyte
isolation | Chemokine (C-C motif) ligand 2 mediates direct and indirect fibrotic responses in human and murine cultured fibrocytes. | | Notch | ЕМТ | rat alveolar
epithelial cells | Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-{beta}-Smad3 pathway. | |---|---|---|---| | TGF-β1 and
CTGF | up-regulation of TGF- β1 and CTGF in pulmonary microvascular endothelial cells induces differentiation of co-cultured fibroblasts | co-culture
system with rat
PMVECs and
fibroblasts | Pulmonary microvascular endothelial cells from bleomycin-induced rats promote the transformation and collagen synthesis of fibroblasts. | | PDE4B | TGF-β induced fibroblasts (PDE4B knockdown) differentiation into myofibroblasts | mRNA
silencing and a
knockdown of
the expressed
PDE4 of
primary normal
human lung
fibroblast | The differential impact of PDE4 subtypes in human lung fibroblasts on cytokine-induced proliferation and myofibroblast conversion. | | MeCP2 | myofibroblast
differentiation | MeCP2 gene expression by siRNA and MeCP2 deficiency in lung fibroblasts isolated from MeCP2 knockout mice | Essential role of MeCP2 in the regulation of myofibroblast differentiation during pulmonary fibrosis. | | Wnt-inducible
signaling protein
1 (wisp-
1)/hyaluran | EMT | primary murine
AEC2 | Mechanical stretch induces
epithelial-mesenchymal transition
in alveolar epithelia via
hyaluronan activation of innate
immunity. | | Peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands | inhibits TGFβ-mediated differentiation of human lung fibroblasts | human lung
fibroblasts | PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. | | TLR9 | increased in fibroblasts
by IL-4 and IL-13,
promotes differentation
of myofibroblasts | normal human
and IPF
fibroblasts | TLR9 is expressed in idiopathic interstitial pneumonia and its activation promotes in vitro myofibroblast differentiation. | | Serum Amyoid P | M2 macrophage differentiation of monocyte | IPF patients | TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. | | IL-15 | myofibroblast
differentiation | human fetal
lung fibroblasts | Interleukin-15 attenuates transforming growth factor-β1-induced myofibroblast differentiation in human fetal lung fibroblasts. | |----------|---|--|--| | NOX-4 | α-SMA expression by controlling activation of Smad2/3 and PDGF-induced fibroblast migration. | normal human
and IPF
fibroblasts | NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. | | THY-1 | Thy-1 expression prevents fibroblast contraction-induced, integrin alpha(v)beta(5)-dependent latent TGF-beta1 activation and TGF-beta1-dependent lung myofibroblast differentiation | RFL-6 rat lung
fibroblasts | Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-beta1 activation and myofibroblast differentiation. | | FXa | myofibroblast
differentiation via TGF-
beta activation | primary human
lung fibroblasts | Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. | | ET-1 | ET-1 and TGF-beta1
independently promote
fibroblast resistance to
apoptosis via p38
MAPK and PI3K/AKT | Normal
primary human
fetal lung
fibroblasts | Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. | | Unc119 | myofibroblast differentiation by activating Fyn and the p38 MAPK pathway | human fetal
lung fibroblast | Unc119 regulates myofibroblast differentiation through the activation of Fyn and the p38 MAPK pathway. | | FIZZ1 | induction of
myofibroblast
differentiation and
prolonged survival of
myofibroblasts | mouse lung
fibroblasts | Antiapoptotic effect of found in inflammatory zone (FIZZ)1 on mouse lung fibroblasts. | | TGF beta | ЕМТ | bronchial
epithelial cells | Detection of epithelial to
mesenchymal transition in
airways of a bleomycin induced
pulmonary fibrosis model derived
from an alpha-smooth muscle
actin-Cre transgenic mouse. | | MK2 | reduced α-SMA expression | mouse
embryonic
fibroblasts
(MEF) from
MK2 knockout
mice | Smooth muscle alpha-actin expression and myofibroblast differentiation by TGFbeta are dependent upon MK2. | |-------------|---|---|--| | FAK/AKT | anoikis resistance of
fibroblasts | Normal
primary human
fetal lung
fibroblasts | Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. | | FGF-1 | apoptosis in fibroblasts
and myofibroblasts and
inhibits the effect of
TGF-beta1 on
myofibroblast
differentiation. | Primary human lung fibroblasts | Acidic fibroblast growth factor decreases alpha-smooth muscle actin expression and induces apoptosis in human normal lung fibroblasts. | | PTEN | inhibits myofibroblast
differentiation | embryonic
mouse
fibroblasts | Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). | | H2O2 | death signal for lung
epithelial cells
produced by
myofibroblasts | IPF fibroblasts
and small
airway
epithelial cells | Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. | | CCR-2 | decreases α-SMA
expression induced by
TGF-beta1 | CCR2
knockout (ko)
mice
fibroblasts | CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. | | Wt1 | MMT | PMCs were
obtained from
IPF lung
explants | Wilms' tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. | | Snail | EMT | murine
bronchial
epithelial cells | Transforming growth factor-β1 induces bronchial epithelial cells to mesenchymal transition by activating the Snail pathway and promotes airway remodeling in asthma. | | microRNA-21 | EMT | lung alveolar
type II cells | The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells. | | Thrombin | EMT | human A549
alveolar
epithelial cells | Thrombin induces epithelial-
mesenchymal transition via PAR-
1, PKC, and ERK1/2 pathways in
A549 cells. | | | T | T | 1 | |----------------|--|---|---| | IL-22 | reduces epithelial to
mesenchymal transition
(EMT) | alveolar
epithelial cell
line A549 cells | Interleukin-22 inhibits bleomycin-
induced pulmonary fibrosis. | | miR-200 | inhibits transforming
growth factor-β1-
induced epithelial-
mesenchymal transition
of AECs | murine AEC | Participation of miR-200 in pulmonary fibrosis. | | S1P | EMT | human AEC | Sphingosine-1-phosphate is increased in patients with idiopathic pulmonary fibrosis and mediates epithelial to mesenchymal transition. | | Cadherin-11 | ЕМТ | human A549
alveolar
epithelial cells | Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-β production and epithelial to mesenchymal transition. | | c-Abl and PKCδ | endo-MT | Primary mouse pulmonary ECs | Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelialmesenchymal transition in vitro. | | FGF-1 | reverse EMT through
MAPK/ERK kinase
pathway | A549 and
RLE-6TN
(human and
rat) alveolar
epithelial-like
cell lines | FGF-1 reverts epithelial-
mesenchymal transition induced
by TGF-{beta}1 through
MAPK/ERK kinase pathway. | | Twist | EMT | murine lung
epithelial cells | Twist: a regulator of epithelial-
mesenchymal transition in lung
fibrosis. | | ROS/HIF | EMT | primary
human, rat, and
mouse AEC | Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. | | HGF/Smad 7 | inhibits EMT | primary murine
alveolar
epithelial cells | Hepatocyte growth factor inhibits epithelial to myofibroblast transition in lung cells via Smad7. | | NO | inhibits EMT | primary human
alveolar
epithelial cells | Nitric oxide attenuates epithelial-
mesenchymal transition in
alveolar epithelial cells. | | IGFBP-5 | fibroblasts differentiation, EMT and mononuclear cell infiltration | primary
fibroblasts and
alveolar
epithelial cells | Insulin-like growth factor-binding protein-5 induces pulmonary fibrosis and triggers mononuclear cellular infiltration. | | LRP-6 | pericyte MT | mice pericytes | LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. | |-------|-------------|----------------|---| |-------|-------------|----------------|---|