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Abstract
175 years have elapsed since John Hutchinson introduced the world to his version of an apparatus that had
been in development for nearly two centuries, the spirometer. Though he was not the first to build a device
that sought to measure breathing and quantify the impact of disease and occupation on lung function,
Hutchison coined the terms spirometer and vital capacity that are still in use today, securing his place in
medical history. As Hutchinson envisioned, spirometry would become crucial to our growing knowledge
of respiratory pathophysiology, from Tiffeneau and Pinelli’s work on forced expiratory volumes, to Fry
and Hyatt’s description of the flow–volume curve. In the 20th century, standardization of spirometry
further broadened its reach and prognostic potential. Today, spirometry is recognized as essential to
respiratory disease diagnosis, management and research. However, controversy exists in some of its
applications, uptake in primary care remains sub-optimal and there are concerns related to the way in
which race is factored into interpretation. Moving forward, these failings must be addressed, and
innovations like Internet-enabled portable spirometers may present novel opportunities. We must also
consider the physiologic and practical limitations inherent to spirometry and further investigate
complementary technologies such as respiratory oscillometry and other emerging technologies that assess
lung function. Through an exploration of the storied history of spirometry, we can better contextualize its
current landscape and appreciate the trends that have repeatedly arisen over time. This may help to improve
our current use of spirometry and may allow us to anticipate the obstacles confronting emerging pulmonary
function technologies.

Respiration from antiquity to the modern era
For thousands of years, humanity struggled to understand the functions and mechanics of respiration.
Hippocrates and the Greek philosophers reasoned that the purpose of the lungs was to temper and cool
blood in the heart [1]. Aristotle posited we only have one lung, and though Galen did perform some
rudimentary experiments on capturing exhaled air into an artificial bladder, he believed the role of the
lungs was to carry off vapours, like smoke from a fire [1, 2]. Our knowledge of the lungs remained
stagnant until the scientific revolution of the 17th century, when new thinkers further elucidated the nature
of breathing. Examples include William Harvey, who in 1628 first detailed pulmonary circulation,
Evangelista Toricelli (a student of Galileo), who discovered the initial laws of atmospheric pressure in
1643, and Robert Hooke in 1667, who kept a dog alive by artificial respiration with bellows [1]. The
Italian mathematician and physiologist Giovanni Borelli (1681) was the first to try to precisely measure the
volume of air inspired in one breath, though his apparatus, which involved sucking liquid up a cylindrical
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tube, did not account for the effects of negative pressure and provided inaccurate results [2]. In the
following two centuries, many others worked on improving Borelli’s measurements. In 1798, Thomas
Beddoes, with the help of his colleagues Humphry Davy, James Watt and William Clayfield at the
Pneumatic Institution in England, created a “mercurial airholder and breathing machine” capable of
accurately measuring lung capacity (figure 1). 16 years later, Edward Kentish would be the first to use a
similar apparatus he named the “pulmometer” in respiratory disease diagnosis, and soon thereafter Charles
Turner Thackrah performed a health survey across England with the help of such a device, establishing
early insights into the relationship between occupational history and lung health [4]. These years of
accelerating incremental innovation finally culminated in 1846, when John Hutchinson, a British surgeon,
published his magnus opus on the newly coined “spirometer” [1]. Hutchinson had refined the pulmometer
to optimize its usability, used it to systematically collect a large sample of respiratory measurements, and
applied modern statistical methods establishing “normal” spirometric values and illuminating the
previously unrecognized relationships between age, height and vital capacity [5]. His work, inspired by
Thackrah and others before him, breathed new life into the field of respiratory mechanics and revealed the
full potential of spirometry [6]. As 175 years have now passed since Hutchinson’s landmark publication, a
look back through the illustrious history of spirometry and towards its potential future is merited.

The Hutchinson spirometer
Hutchinson’s spirometer consisted of a counterbalanced bell inverted in water, whereby breathing into a
connected pneumatic tube resulted in measurable vertical motion of the bell (figure 2) [6, 8]. Using this
device, he performed spirometry on 2130 individuals, anachronistically categorized as sailors, paupers,
artisans, pugilists, compositors and draymen, to name a few (figure 3) [1]. From these measurements, he
described and named the fundamental respiratory volumes: residual air, now known as the residual
volume; reserve air, now expiratory reserve volume; breathing air, now tidal volume; complemental air,
now inspiratory reserve volume; and, finally, the vital capacity, which to this day still represents “the
greatest voluntary expiration, following the deepest inspiration” – the capacity for life [1, 8]. Hutchinson
also correctly identified the relationship between vital capacity, height and age, and recognized that
diseases like tuberculosis could negatively affect vital capacity [2, 8]. Though Hutchinson was not the first
to invent the spirometer or recognize its importance in respiratory disease – in fact even his identification

FIGURE 1 Mercurial air holder and breathing machine developed by Humphry Davy and colleagues at the
Pneumatic Institution in England, circa 1798, 48 years prior to Hutchinson’s spirometer. Reproduced
from [3] courtesy of the Wellcome Collection.
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of the respiratory volumes was preceded by Julius Jeffreys in 1843 – his synthesis and expansion of the
work of those before him and extensive publications and promotion of the value of spirometry as a clinical
tool made him a central figure in its history [4, 5]. Unfortunately, despite its initial positive reception by
contemporary scientists and physiologists, and Hutchinson’s own efforts to promote his spirometer, its use
was relegated predominantly to research for more than 50 years after its invention [6, 8]. This may be
partly due to the fact that Hutchinson’s background selling life insurance prompted him to promote the
spirometer first for actuarial estimations, that its correct use required a degree of patient education and
coordination, or that medicine’s understanding of clinical respiratory pathology was still developing [2, 6].
Whatever the reason, it would not be the last time in the history of pulmonary function testing that the
clinical value of new discoveries and techniques was initially overlooked.

The golden age of spirometry
The 1920s marked the next leap forward for pulmonary function testing. Physicians like Georges Dreyer
pioneered the use of spirometry in pre-operative thoracic surgery assessments, evaluation of occupational
lung disease and the respiratory problems experienced by pilots during World War I, and documenting the
increasingly recognized complications of asthma and emphysema [2, 6]. In the 1930s, Alvin Barach
quantified the response of expiratory flow rates to nebulized epinephrine in asthma and emphysema, the
first published report of the effectiveness of bronchodilation. Soon after, Cournand and Richards of
Columbia University proposed that respiratory disease could be divided into problems relating to
ventilatory obstruction and restriction, establishing the basis for the classification system that remains in
use today [6]. The next significant advancement came in 1947, when two French physicians, Robert
Tiffeneau and André Pinelli, proposed the capacité pulmonaire utilisable à l’effort (CPUE), defined as the
largest forced volume that could be expired in one second following a maximal inspiration, known in
English as the forced expiratory volume in one second (FEV1) [9]. Tiffeneau and Pinelli recognized that
FEV1 more sensitively predicted ventilatory limitations during exertion than the vital capacity, was easier
to perform than other popular manoeuvres such as the maximum breathing capacity (maximal voluntary
ventilation) and was relatively constant between measurements [9, 10]. They also introduced the
Tiffeneau–Pinelli index, representing the ratio of CPUE and vital capacity, now known as the FEV1/ forced
vital capacity (FVC) ratio [6]. Independently of his French colleagues, Edward Gaensler at Boston
University also recognized in 1951 that the FEV1 was an important spirometric measurement that most
closely correlated to the maximum breathing capacity [11]. However, despite the significance of Tiffeneau

FIGURE 2 Diagrams 25 and 26 from Hutchinson’s original publication describing the spirometer. Diagram 25
depicts the internal mechanisms of the spirometer and diagram 26 demonstrates how to position a patient in
relation to the device. Reproduced from [7].
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and Pinelli’s initial discovery, and possibly because it was published solely in French, it took nearly
5 years and the parallel work of Gaensler for the FEV1 to be globally recognized as an important
pulmonary function measurement [6].

The flow–volume curve
Over the years that followed, different approaches to measuring ventilatory function proliferated, from
Fowler’s work on the mean flow over the middle-part of expiration, known now as the forced expiratory
flow at 25–75% of forced vital capacity (or FEF25–75%), to Wright’s creation of the peak flowmeter in
1959, which is still in use today [6]. While these and traditional forced-breathing methods were indeed
useful indices of chronic respiratory disease, they failed to capture the complete nature of respiratory
behaviour and were often highly susceptible to patient effort [12]. Pioneering work from Fry and Hyatt and
Permutt and Mead in the late 1950s and early 1960s illuminated this knowledge gap, providing a rich and
novel picture of the relationship between pulmonary pressures, volumes and flows [12, 13]. Fry and
Hyatt’s description of the “flow–volume curve” robustly defined the intrinsic characteristics of the
intrathoracic pulmonary system in motion, was highly reproducible across efforts and more accurately
characterized perturbations in expiratory flow due to pathology or inhalants [13]. Permutt and Mead’s work
complemented this representation by providing an explanation of the dynamic flow limitation observed in
flow–volume curves through what is now known as the “equal pressure point theory” [6, 13]. In fact, these
giants of pulmonary physiology and their colleagues would occasionally meet informally over dinner to
debate and discuss their ideas, starting a tradition of scientific collaboration and comradery that continues
to this day and known as the Flow-Volume Underworld [14]. Though the work of Fry, Hyatt, Macklem,
Mead, Permutt and other members of the Flow-Volume Underworld is now recognized to have
revolutionized our understanding of pulmonary physiology, once again broad clinical uptake of their
findings was slow, and Fry’s early reports were said to have “languished in obscurity” for several years.
This may be attributed partially to the complexity of the computations involved in creating flow–volume
curves, and to a lack of standardization of “normal” values and technical methodology [13].

Standardization of spirometry
With increased understanding of the theoretical basis of respiration, the popularity of spirometers grew.
Throughout the 1960s and 1970s, many groups sought to better describe populations using spirometry,
recognizing that FEV1 and FVC could help delineate between and characterize restrictive and obstructive
disease, and that the flow–volume loop could detect intra- and extra-thoracic obstruction [15, 16].
However, the wide variety of available spirometers and the lack of standard testing methods resulted in
considerable measurement variability, limiting spirometry’s broader potential [6]. This led the American
Thoracic Society (ATS) to convene a meeting in Snowbird, Utah, where 22 American scientists met and
produced the first standardization guidelines for spirometry in 1979 [6, 17]. Their recommendations were the

FIGURE 3 Categorization of the 2130 subjects studied by Hutchinson with his spirometer. Reproduced from [7].
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culmination of a 2-year effort and represented the most thoroughly reviewed statement ever published by
the ATS. They included sections on instrument specifications, validation, quality control, manoeuvre
performance, acceptability and reproducibility standards, and reference values [18]. A similar effort led to
European guidelines in 1983, and though later updates of both these guidelines were broadly similar in their
recommendations, it took 22 years for the two societies to officially harmonize their standardization efforts in
the 2005 “ATS/ERS Task Force: Standardization of Lung Function Testing” document [19]. This document
was only recently updated in 2019, a testament to the depth and breadth of the original effort [20].

In concert with standardization, accurately interpretating spirometry required the development of reference
equations to account for the observed differences in expected values across age, height, sex and ethnicity
[21]. The first broadly adopted reference equations came from the European Coal and Steel Community in
1983, which arose out of work to better characterise occupational lung disease [22, 23]. Though these
equations were in use for many years, they were criticized for their lack of longitudinal equations covering
childhood to old age, their underestimation of predicted FEV1 and FVC, and their ethnic homogeneity,
leading the ATS to initially develop and use their own reference equations [24–27]. As with
standardization, it was only in 2012, nearly 30 years later, that the Global Lung Function Initiative (GLI)
published their seminal work addressing many of the previous limitations in reference equation research,
pooling spirometry data from 74,187 asymptomatic non-smokers across 26 countries to develop
international spirometry reference equations that are still in use today [21].

The prognostic potential of spirometry
Standardization of spirometry led to an abundance of research to explore its potential prognostic significance.
These efforts were bolstered by findings from the Framingham study in the late 1960s that showed a strong
independent relationship between reduced FVC and the risk of coronary heart disease [8, 28]. The 1970s and
1980s saw several population level investigations, with publications from Friedman et al. finding that FVC was
also a risk factor for myocardial infarction [29]. Beaty et al. extended these findings from the Baltimore
Longitudinal Study of Aging, showing that FEV1 predicted all-cause mortality even when adjusted for age and
smoking status [30]. Lange et al. confirmed this further in 662 male and 2048 female never-smokers enrolled
in the Copenhagen Heart Study, concluding that decreases in both FEV1 and FVC were significant risk factors
for mortality [31]. This work continued into the 1990s, with large population cohorts such as the National
Health and Nutrition Examination Survey (NHANES) corroborating the evidence for spirometry as a risk
factor for overall mortality, lung cancer and cardiovascular disease [32–34]. Despite this growing evidence and
many calling for spirometry to be widely adopted as a screening tool in general health assessments, only 20–
30% of primary care physicians in the US had a spirometer in their offices or used one regularly by 2002 [8,
34]. This failure once again to translate the potential of spirometry into clinical practice led Macklem and
Permutt two revered pulmonologists to wonder if the “absence of the use of pulmonary function … must be
borne by the expert in pulmonary medicine and especially in their] relation to the non-specialist” [8].

The evidence for spirometry
After the results of the Framingham study validated the prognostic potential of spirometry in
cardiorespiratory disease, interest in spirometry as a tool for managing chronic respiratory disease grew [35].
In the subsequent years that overlapped with the birth of the “evidence-based medicine” movement of the
1990s, the clinical utility of spirometry was increasingly studied. These efforts resulted in spirometry
becoming the gold standard tool for respiratory disease diagnosis, monitoring disease status, assessing
response to therapies, prognostication, pre-operative assessment, determining eligibility for specialized
therapies and as an important outcome in pulmonary research [36]. However, some controversy still exists
around the optimal role for spirometry in several important respiratory conditions [35, 37–42].

The work of Fletcher and Peto in the late 1970s cemented the role of spirometry in the diagnosis and
management of chronic obstructive lung disease (COPD), establishing the basis for our current
understanding of COPD as a disease of progressive lung function loss related to cigarette smoking [43, 44].
They also introduced the now famous “Fletcher–Peto diagram” of FEV1 decline over time [45, 46]. Building
on their discoveries, Burrows and colleagues showed that FEV1 decline was also a strong predictor of
10-year mortality in COPD [35, 47]. The value of spirometry in diagnosing COPD was further supported by
the NHANES III study, which found that 63% of asymptomatic smokers with “low lung function” (FEV1/
FVC ratio of less than 0.70 and FEV1 less than 80% predicted) denied a previous or current history of
obstructive lung disease [35, 48]. Current international COPD guidelines now require spirometry to make the
diagnosis of COPD in patients with appropriate symptoms and/or risk factors and endorses the use of
spirometry in COPD prognostication using tools such as the BODE (Body-mass index, airflow Obstruction,
Dyspnea and Exercise) index [49]. However, the value of spirometry for following disease status is more
contentious. One underappreciated aspect of Fletcher and Peto’s early work is that they demonstrated
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significant heterogeneity in FEV1 decline over time in cigarette smokers, suggesting that not all patients with
COPD follow the Fletcher–Peto curve [44]. Contemporary research has expanded on these findings,
revealing that only roughly half of adults with COPD demonstrate enhanced FEV1 decline over time, that
clinical symptoms often do not correlate with spirometry and that there remains no strong evidence to
support the use of routine periodic spirometry in the management of stable COPD [37, 41, 46, 50, 51].

Comparably to COPD, the importance of spirometry in the diagnosis and management of asthma was poorly
understood for most of the 20th century. In the early 1900s, physicians considered asthma to be an acute
disorder of episodic bronchospastic exacerbations due to dysregulated airway neural control rather than a chronic
inflammatory process [52]. Over time, understanding of the inflammatory and immunologic nature of asthma
grew, as did the awareness that chronic asthma could lead to airway remodelling identifiable with spirometry
[53]. Current international asthma guidelines now strongly endorse the importance of spirometry with
bronchodilator testing in the initial diagnosis of asthma, and ongoing monitoring with regular spirometry, as
FEV1 is a strong independent predictor of asthma exacerbation risk [54]. Without spirometry, clinicians also risk
over-diagnosing and treating patients who present with respiratory symptoms, as a recent Canadian study showed
that 33.1% of patients diagnosed with asthma in the community had no objective evidence of bronchodilator
reversibility or airway hyperreactivity when rigorously tested [55]. However, the value of spirometry in
following patients with asthma has also been contested by the work of Abramson et al., that did not demonstrate
any differences in asthma-related quality of life, asthma control, or exacerbation rates with regular spirometry
versus usual care in children and adults with asthma followed in primary care practices [40, 56].

The line between asthma and COPD is also an area where interpreting the results of spirometry can be
challenging. Spirometry with bronchodilator testing was initially explored in the 1950s in an attempt to
clearly differentiate airway diseases into reversible (i.e. asthma) and irreversible (i.e. COPD) forms [57].
However, research since the 1980s called this into question, showing no clear cut-off between asthma and
COPD in bronchodilator response, and sometimes significant post-bronchodilator changes in patients with
severe emphysema [57–60]. The more recent concept of asthma COPD overlap (ACO) further complicates
this binary approach to interpreting spirometry [61, 62]. Given the persistent lack of a universally accepted
definition for ACO, uncertain epidemiology, and significant clinical heterogeneity, the effectiveness of
spirometry in diagnosing and managing patients with ACO is still being debated [62, 63].

There are a multitude of other conditions in which spirometry is commonly used in modern clinical care,
though evidence often remains imperfect. For example, in cystic fibrosis (CF), spirometry is considered
essential to monitoring disease progression and diagnosing exacerbations, to grading the severity of CF lung
disease and to decision making regarding response to therapies and timing of transplant referral [64–67].
Spirometric measurements are also frequently included as important outcomes in CF clinical trials,
predicting Pseudomonas acquisition, exacerbation rate and mortality [64, 66, 68]. However, spirometry is
harder to obtain in younger children with CF and measurements are more variable [65]. Alternative
techniques to assess airway function in CF like the lung clearance index derived from multiple breath inert
gas washout have also been shown to be more sensitive than FEV1 in detecting early structural changes in
the small airways, in assessing treatment-related changes in ventilation across ages and are easier to perform
in children [64, 65, 69–71]. Another example is idiopathic pulmonary fibrosis (IPF), where FVC has been
explored as a prognostic indicator, with declines found to be associated with decreased survival time and
all-cause mortality [72, 73]. IPF guidelines recommend regular spirometry with particular attention to
decreases in FVC greater than 10% of a patient’s baseline, as this holds particular prognostic value [74, 75].
Change in FVC has also become the standard accepted primary endpoint in all major trials and is used as a
surrogate for mortality [76]. However, this metric is controversial as critics argue that FVC has not been
sufficiently validated as a surrogate endpoint in IPF, citing a lack of evidence to support that
treatment-related changes in FVC predict clinically meaningful changes, and that without an effective
therapy that significantly improves mortality, there is no benchmark against which FVC can be validated
[39, 77]. Spirometry is also critical in the management and monitoring of lung transplant patients for
identification of potential treatable causes of graft injury such as acute rejection and for prognostication in
chronic lung allograft dysfunction (CLAD) [78, 79]. Through the various developments in our understanding
of CLAD and the different CLAD phenotypes, spirometry remained the primary means by which these
pathophysiologic changes in allograft function are diagnosed and categorized [78, 80]. However, the
recognition that acute rejection and CLAD initially manifest in the small airways has raised concern that
spirometry – which assesses the large and medium-sized airways – may be missing disease in this “silent
zone”, preventing earlier appreciation and treatment of clinically important dysfunction [81, 82]. For
example, spirometry has been shown to only have 57% sensitivity for detecting clinically significant acute
allograft rejection [83]. The routine use of spirometry in the preoperative assessment of lung cancer resection
surgery has also been challenged, as much of the evidence is based on data from the 1980s [84–86].
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More recent analysis has questioned its ability to predict postoperative complications depending on the
surgical technique, particularly in patients with co-existing COPD where the “lobar volume reduction effect”
may paradoxically improve respiratory mechanics post-resection [87, 88].

Moving spirometry out of the laboratory and into the office
Despite standardization efforts from the 1990s onward, and growing evidence supporting the utility of
spirometry in the routine care of respiratory patients, adoption of spirometry in primary care remained
suboptimal by the turn of the 21st century [89, 90]. One of the barriers contributing to this problem was the
reliance on conventional hospital-based in-laboratory spirometry, which could create delays in care and was
often inconvenient for patients [91]. To address these problems, electronic spirometers designed for office use
were developed and marketed to primary care practices [92]. Based on results from NHANES III and the
multicentre Lung Health Study, the National Lung Health Education Program (NLHEP) also strongly
promoted office spirometry in a consensus statement in 2000, recognizing its potential for earlier identification
of patients at risk for COPD before the onset of clinical symptoms and the possibility of modifying the natural
history of disease [90, 93]. However, despite the availability of low-cost office spirometers and the
well-publicized NLHEP motto to “Test your lungs. Know your numbers”, increasing spirometry uptake
remained challenging [94]. Surveys in primary care in the early 2000s found that lack of training, uncertainty
about test impact and low confidence in the use and quality of spirometry were important obstacles [94–96].
In the last 10 years, newer generations of electronic portable spirometers have addressed some of the technical
issues of early models, and recent guidelines support the notion that high quality testing is possible with only
limited staff training [97–101]. Nonetheless, the 2018 update from the NLHEP found that the full potential of
office spirometry has still not been realized, though adoption in primary care has improved over time [37].

The intersection of spirometry and race
Pulmonary function testing is one of the few broadly applied clinical tests that incorporates self-identified
race or ethnicity into its reference definitions [102]. The view that genetic ancestry and racial differences
intrinsically influence pulmonary capacity is widely accepted in pulmonary medicine, but many have
challenged the scientific validity of these claims [103–107]. Race/ethnicity is a social construct that is
undeniably associated with variance in health and disease outcomes, but the notion that these differences
are principally related to innate genetic factors rather than environmental ones has a disturbing and racist
history [105]. Former President Thomas Jefferson’s 1785 Notes of the State of Virginia are one of the first
recorded instances of proposed differences in pulmonary function based on race, suggesting a “difference
of structure in the pulmonary apparatus” between black slaves and white colonists [104, 105]. Plantation
owner, physician and slaveholder Samuel Cartwright, expanded on Jefferson’s ideas in the 19th century,
promoting the idea of “pulmonary deficiency” related to black people [104]. The popularization of
Hutchinson’s spirometer helped further this bias, exemplified by Benjamin Gould’s 1864 US Sanitary
Commission survey of 21,752 Civil War soldiers, sailors, prisoners, and students using an adapted
field-spirometer, that reported decreased lung capacity measurements in non-white subjects without
adjusting for height, age, occupation or socioeconomic status (figure 4) [4, 104, 108]. This prejudice

FIGURE 4 Gould’s unadjusted breakdown of lung capacity in cubic inches by race and health status.
Reproduced from [108].
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permeated throughout the scientific community and into the turn of the century, with influential statistician
Frederick Hoffman citing decreased lung capacity as an argument against freedom for African Americans
[103, 104]. His work gave broad credibility to scientific racism, despite the dissenting work of leading
African American intellectuals like W.E.B. DuBois and Kelly Miller, who contested that inequalities in
socioeconomic status and access to medical care were not accounted for in survey data [103, 104].

Over the next century, numerous studies were carried out that attempted to document differences in
spirometry related to race or ethnicity, however a 2013 systematic review by Braun et al. found that among
226 articles published between 1922 and 2008, the majority neither defined race/ethnicity, nor accounted
for socioeconomic status, despite nearly all claiming that non-white racial/ethnic groups had lower lung
function [109]. These limitations and the contentious history of spirometry has gained more attention in the
research developing reference equations or race/ethnicity “correction factors” in the last 10 years. The most
important example is the GLI 2012 publication discussed above, which provided reference equations for
white people, African Americans, North East Asians and South East Asians, and acknowledged the
limitations of self-reported race/ethnicity and the potential influence of socioeconomic and environmental
factors [21, 110]. More recently, the Canadian Health Measures Survey also provided correction factors for
multiple races and indigenous peoples, who have previously largely been excluded from research [111].
While the principle objective of these equations is to reduce misinterpretation of spirometry in populations
that have been observed to have varying normal measurement ranges, basing these distinctions on
self-identified race/ethnicity remains problematic [103–105, 110]. For one, the concept of “race correction”
is linguistically prejudicial, as it implies that “correct” values are those corresponding to white populations.
This idea of race correction was originally discussed in the 2005 ATS/European Respiratory Society (ERS)
guidelines for when race or ethnicity-specific equations were not available but has since been removed in
the 2017 reporting guidelines and 2019 standardization of spirometry update, which favour instead the use
of race-specific reference equations like those provided by the GLI [19, 20, 112]. Secondly, current racial
classifications often fail to account for the variation that exists within the same categories of self-identified
race/ethnicity. For example, North American-born individuals of Chinese, Japanese and Indian ancestry
have been shown to have different reference spirometry values than those born outside the US and Canada,
and various Chinese ethnic subgroups have been shown to have different normal ranges [110, 112, 113].
Though there are studies that have used genetic techniques to show that sitting height ratio (a known
predictor or lung size) is heritable [114], and that genetic markers of ancestry can accurately predict lung
function [102], the influence of unmeasured confounders such as premature birth, socioeconomic status
and other environmental factors associated with structural racism cannot be fully accounted for in these
studies [115]. Finally, even assuming some degree of intrinsic genetic difference, growing admixture
between populations is likely to render existing equations obsolete over time [110].

Finding solutions to these issues that prioritise both patient equity and scientific rigour will remain
challenging and likely require much trial and error. In 2013, Dr. Lindy Braun, Professor of Medical
Science and Africana Studies at Brown University, supported by the late globally respected pulmonologist
Dr. Philip H. Quanjer, called for an international workshop where pulmonologists, historians,
anthropologists and sociologists could meet to discuss and develop methodologies to guide future research
into racial and ethnic disparities in pulmonary function testing [103, 109]. This year, such a conference
was convened by the ATS, and a report is expected by the end of 2021. The 2021 American Thoracic
Society Conference in May also held several symposia on racism and health disparities, with sessions
devoted to race and pulmonary function testing [116].

The future of spirometry
Appreciating the complex and sometimes controversial 175-year history of spirometry, we must now ask what
the future holds for this important tool. For one, optimal uptake and use of spirometry is still not ideal, and
there remains significant health equity disparities preventing broader access to spirometry [91, 110, 117, 118].
In primary care, for example, the percentage of spirometry performed according to ATS/ERS criteria is often
less than 50%, and agreement between general practitioners and pulmonologists on diagnosis is often
low [117]. Many patients are still diagnosed with asthma and COPD without appropriate spirometric testing,
and underserved populations, such as older adults and those with lower socioeconomic status, suffer
disproportionately from these care gaps [55, 110, 119, 120]. Considering also the issues related to race
discussed above, it is clear that further research, improved public policy and advocacy efforts devoted to
addressing the inefficiencies and inequities in our current use of spirometry are needed.

One trend that will likely meaningfully influence the future of spirometry is the continued shift from
in-laboratory testing into patient homes, as the current generation of lower-cost portable electronic
spirometers are mainly being developed and marketed for home patient use. These spirometers include
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features such as linked smartphone apps that provide usage guidance and performance feedback, and data
storage in cloud-based services that allow patients to share results securely with their physicians [101].
Home spirometry has been studied in asthma and COPD, IPF, CF and post stem cell and lung
transplantation [121–126]. It has been shown to be usable, to provide comparable results to in-laboratory
testing for FEV1 and FVC [101, 126, 127], and to be less variable and less susceptible to placebo
improvements than clinic-based spirometry [126]. There are still important limitations to home spirometry,
as not all devices meet ATS/ERS quality standards nor are they suitable for all patient populations without
proper education and training. Furthermore, studies that show a clear relationship between home spirometry
use, clinical important outcomes and cost-effectiveness are still lacking [101]. However, given the severe
limitations on access to conventional laboratory and clinic spirometry during the current coronavirus
disease 2019 pandemic due to concerns regarding infection control, home alternatives may become a more
prominent part of respiratory care in the near future [128].

In addition to the continued miniaturization and mobility of spirometry, novel analyses of existing
spirometric data may also lead to improved disease classification and new standards. For example, analysis
of the “peak index” – the number of peaks adjusted for lung size on the expiratory flow-volume curve of
spirometry – has recently been explored as a new measure associated with radiographic disease, lung
function decline, and mortality in COPD [129]. Machine learning techniques have also recently been used
to analyse the “area under the expiratory flow–volume curve” and develop a robust classification algorithm
that can accurately differentiate between normal, obstructive disease, restrictive disease and mixed
impairments using spirometry alone [130]. There is also a growing body of research investigating how
smartphone microphones could be used to generate precise spirometric measurements, replacing the
conventional spirometer entirely [131]. These smartphone spirometers have so far only been tested in pilot
studies and will require much more validation prior to being clinically viable, but the ubiquity of modern
smartphones and capacity for broad dissemination make them a promising future direction [132–136].

Thinking beyond spirometry
Considering what the history of spirometry has taught us, it is also necessary to contemplate the ways in
which modern spirometry does not satisfy our physiologic and clinical needs, and how other approaches to
understanding respiratory function may complement or replace spirometry in the coming years. One crucial
limitation of spirometry that has been present since the work of Tiffeneau and Pinelli is its reliance on
forced expiratory manoeuvres. As the lungs function not in forced expiration, but with tidal breathing, our
dependency on spirometry to describe and classify lung disease will always be fraught with variability and
reproducibility concerns [82, 137]. Due to the effort dependent nature of spirometry, it is also often
sub-optimally performed by those unable to fully cooperate such as children or those with cognitive and
physical impairment, creating challenges in the diagnosis and management of these frequently underserved
populations [138, 139]. Spirometry is equally unable to fully capture pathology until more than 50% of
small airways have been affected [140], often resulting in a disconnect between patient symptoms and
spirometric measurements, and the inability to accurately identify early respiratory disease affecting the
small airways [37, 81, 141, 142]. There also remains considerable debate around one of the most
fundamental uses of spirometry – the diagnosis of obstruction [143–146].

One emerging lung function testing technology that addresses some of these limitations is respiratory
oscillometry. While first described by duBois et al. in 1951, the advent of modern computing technology
was necessary to realise its full potential [147–149]. Performed while tidal breathing, oscillometry directly
assesses the mechanical properties of the entire respiratory system through the application of multi-frequency
acoustic waves at the mouth, resulting in measurements of respiratory impedance [81, 150]. It can provide
accurate measurements across age ranges and in patients currently underserved by spirometry such as
infants, the elderly and those with physical or cognitive impairments [151, 152]. Oscillometry is also more
sensitive than spirometry in the early diagnosis of COPD and acute cellular rejection post lung transplant,
and correlates better with respiratory symptoms, airway hyper-responsiveness and overall control in asthma
[81, 152–157]. Though there is still a paucity of normal reference values for oscillometry, and variation
between different devices can be problematic, recently published technical and interpretation guidelines and
efforts to harmonise measurements from different commercial oscillometers are important developments
[150, 158, 159]. Additionally, collection and improvement of oscillometry normative data by the GLI
is ongoing, and efforts to standardize interpretation will facilitate its translation into routine clinical use
[160–162]. With continued research and clinical validation, oscillometry may serve as an important adjunct
to spirometry, and may even replace it in many situations.

Though we highlight oscillometry due to the many historical parallels between it and spirometry in their
path to validation and clinical use, other technologies to assess lung health such as the fraction of exhaled
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nitric oxide (FENO) also deserve mention. FENO, like oscillometry, does not require forced expiratory
manoeuvres, and is more sensitive than spirometry at identifying type 2 airway inflammation in asthma
[163, 164]. As portable and cheaper FENO devices become more broadly available, they may take on a
larger role in assessing lung function [165]. Similarly, the lung clearance index from multiple breath inert
gas washout discussed above is a promising alternative to spirometry, and other technologies like
functional pulmonary magnetic resonance imaging and electrical impedance tomography are providing
novel insights to understanding lung function [166–170].

Conclusion
The history of spirometry from conception to present provides valuable insights into the overall
progression of our understanding of the respiratory system and helps contextualize many of the issues
preventing the ideal use of this powerful tool today. Contemplating this history also allows us to anticipate
the obstacles we are likely to face with novel technologies like oscillometry providing a roadmap to avoid
the same historical pitfalls of effectively translating new pulmonary function testing discoveries into
clinical practice. First, a deep understanding of the involved underlying respiratory physiology is needed.
Next, technical, reference, and interpretative standards and guidelines must be developed and refined.
Then, the evidence for routine clinical use must be rigorously established and implementation strategies
must be created to address the barriers of appropriate dissemination. Crucially, equitable use must be
strived for, through studying and addressing how the social determinants of health influence our patients’
healthcare trajectories. These steps all depend on strong collaboration and cooperation between
international scientists and clinicians, between generalists and specialists, and between public and
professional bodies. Finally, we must remember and consider the original goal of Hutchinson 175 years
ago and continue like him to seek a greater understanding of respiratory function. By doing so, we may
discover the next techniques that will illuminate the complex mechanics of respiration and reveal new vital
measurements that describe our capacity for life.
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