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ABSTRACT
Background: Our group has identified the receptor for advanced glycation end-products (RAGE) as a
predictor of World Trade Center particulate matter associated lung injury. The aim of this systematic review is
to assess the relationship between RAGE and obstructive airways disease secondary to environmental exposure.
Methods: A comprehensive search using PubMed and Embase was performed on January 5, 2018 utilising
keywords focusing on environmental exposure, obstructive airways disease and RAGE and was registered
with PROSPERO (CRD42018093834). We included original human research studies in English, focusing
on pulmonary end-points associated with RAGE and environmental exposure.
Results: A total of 213 studies were identified by the initial search. After removing the duplicates and
applying inclusion and exclusion criteria, we screened the titles and abstracts of 61 studies. Finally, 19 full-
text articles were included. The exposures discussed in these articles include particulate matter (n=2) and
cigarette smoke (n=17).
Conclusion: RAGE is a mediator of inflammation associated end-organ dysfunction such as obstructive
airways disease. Soluble RAGE, a decoy receptor, may have a protective effect in some pulmonary
processes. Overall, RAGE is biologically relevant in environmental exposure associated lung disease. Future
investigations should focus on further understanding the role and therapeutic potential of RAGE in
particulate matter exposure associated lung disease.
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Background
Obstructive airway disease (OAD) due to environmental exposure is a global health concern [1–3].
Mounting evidence supports the role of receptor for advanced glycation end-products (RAGE), also
known as the advanced glycation end-product receptor (AGER), in the development of OAD [4–6].

RAGE is a member of the immunoglobulin superfamily and has several isoforms which recognise pathogens
and endogenous ligands. RAGE is at the highest baseline level in the lungs, where it is expressed by alveolar
type epithelial cells, alveolar macrophages and the smooth muscle cells of the airways [7, 8]. The membrane
bound form is a key mediator of inflammation, metabolic dysfunction and vascular injury [9–11].

Given its pro-inflammatory role and abundance in the lungs, RAGE has been shown to be an important
biomarker of airflow obstruction in various diseases such as cystic fibrosis, asthma, chronic obstructive
pulmonary disease (COPD) and particulate matter (PM)-associated OAD [12–16]. Furthermore, RAGE
has been implicated in a murine smoke-exposure model of emphysema [17].

In human subjects with OAD, explanted lungs were noted to have increased expression and
bronchoalveolar lavage (BAL) levels of RAGE [4, 18]. In addition, the association between RAGE and OAD
has been studied at the genomic level. Single nucleotide polymorphisms within the AGER locus have been
linked to forced expiratory volume in 1 s (FEV1) in two genome-wide association studies (GWAS) [19, 20].
AGER-associated loci using in vitro models have been investigated to further our understanding of possible
mechanisms. The promoter variant AGER-429 T/C (rs1800625) is associated with severity of airflow
obstruction in cystic fibrosis and cells with this functional variant have elevated RAGE expression [21–23].

While the membrane-bound form of RAGE has been implicated in airway inflammation and obstruction,
the circulating soluble form (s)RAGE has been shown to act as a decoy receptor. Studies show that OAD,
particularly COPD, is associated with reduced levels of circulating sRAGE [12, 13]. The utility of sRAGE
as a diagnostic biomarker in OAD is currently being investigated [14, 24]. The exact correlation of sRAGE
and lung disease appears to vary depending on the pulmonary insult. There is evidence that sRAGE is
involved in pathogenesis of acute lung injury (ALI). One study showed that sRAGE was inversely
correlated with the rate of alveolar fluid clearance [25]. In a direct ALI model elevated sRAGE levels were
seen in BAL samples 24 h after lipopolysaccharide-induced injury. Furthermore, treatment with mouse
recombinant sRAGE 1 h post-injury attenuated neutrophilic infiltration, inflammatory mediator
production and alveolar capillary permeability [26]. A subsequent study showed that RAGE was only
elevated in BAL fluid of mice with direct ALI compared to an indirect ALI model [27].

The role of RAGE has been examined in several occupational lung diseases as well as pulmonary fibrosis.
Some studies have suggested a protective effect, as evidenced by low expression of RAGE and sRAGE in
human and mouse models of pulmonary fibrosis [28, 29]. Consistent with this hypothesis, mice deficient
in Ager (Ager−/−) develop rapidly progressive fibrosis with asbestos exposure [30]. In contrast, another
study showed that Ager−/− mice exhibited less fibrosis when exposed to bleomycin as compared to
wild-type controls [31]. Furthermore, Ager−/− mice do not demonstrate any difference in the severity of
fibrosis with silica exposure [30]. In models of atopic asthma, Ager−/− mice did not demonstrate airway
hypersensitivity, eosinophilic inflammation and airway remodelling. In fact, Ager inhibition in wild-type
mice significantly reduced inflammation [15].

Finally, our group has identified elevated serum lysophosphatidic acid (LPA), a product of low-density
lipoprotein and a known ligand of RAGE and sRAGE, as World Trade Center-Lung Injury (WTC-LI)
biomarkers in the Fire Department of New York (FDNY) cohort [32–34]. Therefore, we have focused this
systematic review on RAGE, a biologically plausible mediator and biomarker of environmentally associated OAD.

Methods
Review strategy
A systematic review of the literature was performed adhering to the Preferred Reporting Items for
Systematic Reviews and Meta-analysis (PRISMA) guidelines [35, 36]. Our population, intervention,
control, outcome (PICO) question was “In adult patients with obstructive airways disease (P), we
performed a systematic review to identify (I) the role of the advanced glycation end-products receptor in
subjects whose OAD is secondary to an environmental exposure (O)”. Given the design of our systematic
review, no comparison control (C) was needed. PubMed and Embase were searched on January 5, 2018.
The details of the protocol of our systematic review were registered on PROSPERO (CRD42018093834) and
can be accessed at www.crd.york.ac.uk/prospero/display_record.php?RecordID=93834.

Search terms
Databases were searched for the following: (particulate matter OR air pollutants OR air pollution OR
occupational pollution OR environmental pollution OR ambient air OR pollution OR particle size OR air
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filters OR smoking OR cigarette smoke) AND (advanced glycation end products receptor or rage or ager)
AND (lung OR respiratory OR lung diseases OR obstructive lung disease OR obstructive airway disease
OR obstructive airways disease OR asthma OR chronic bronchitis OR COPD OR chronic obstructive
pulmonary disease OR emphysema).

For the purposes of this review, we defined obstructive airways diseases to include asthma, emphysema,
chronic bronchitis and COPD; environmental exposures included cigarette smoke, particulate matter/dust,
air or other occupational pollution. We chose to include cigarette use as an environmental exposure, since
there is literature that passive smoking or environmental tobacco smoke is associated with an increased
risk of COPD similar to direct tobacco use [37–39].

We included studies that 1) discussed advanced glycation end products receptor or any of its isoforms in
the setting of OAD due to environmental exposures and 2) assessed OAD development after
environmental exposure. We excluded studies that 1) were not original research; 2) not written in the
English language; 3) focused on non-human subjects or in vitro work; or were 4) conducted in a paediatric
population.

Data extraction
Each article was screened for study design, patient characteristics, sample size, tools used, severity and
prevalence of OAD. Results from each database search were filtered for human subjects and English
language, and imported into EndNote X8 (Clarivate Analytics, Philadelphia, PA, USA). The references were
then screened for duplicates using RefWorks (ProQuest LLC, Ann Arbor, MI, USA). Only original research
papers were then reviewed (title, abstract and full text) to ascertain eligibility. In addition, we examined the
references cited in the relevant articles. All results were screened by SHH and further independently
evaluated by AN and AO. Disagreements were resolved by consensus (supplementary tables S1–S5).

Results/synthesis
Study inclusion, characteristics and sources of bias
A total of 213 studies were identified from PubMed, Embase and reference-list screening (figure 1). After
application of selection criteria, 61 research papers were assessed for inclusion. Of these, 41 were excluded
after the initial review. Finally, 19 original research articles were considered eligible to be included. There
are two types of environmental exposures discussed in these articles, particulate matter (n=2) and cigarette
smoke (n=17). Of these, six investigations discuss RAGE as a biomarker of OAD activity, seven evaluate
the association of RAGE with OAD, four are GWAS discussing RAGE and its isoforms in COPD and
smoking, and two discuss the role of RAGE in multiple end-organ outcomes. Data from all searches,
screening and extraction are available (table 1 and supplementary table S1).

RAGE in the context of particulate matter exposure
Autophagy is critical in the pathogenesis of PM-related COPD, leading to impairment of diffusion. One
retrospective study in Taiwan investigated the association of clinically relevant biomarkers in COPD patients
(Global Initiative for Chronic Obstructive Lung Disease stages III/IV) exposed to particles with a 50%
cut-off aerodynamic diameter of 10 µm (PM10). The 1-year average PM10 exposure was positively correlated
with interleukin (IL)-6, ubiquitin and beclin-1 levels, and negatively correlated with diffusing capacity of
the lung for carbon monoxide (DLCO), circulating RAGE level and arterial oxygen saturation [41].
Recently, our group studied the role of sRAGE in the WTC-PM exposed firefighters as well as in a murine
model of PM exposure. sRAGE is associated with WTC-LI in humans and mice alike, and in the murine
model, absence of RAGE was protective against loss of lung function and airway hyperreactivity due to
WTC-PM exposure [6].

RAGE as a biomarker of emphysema
Studies have evaluated sRAGE as a potential diagnostic biomarker in order to avoid chest imaging and
possibly detect emphysema at earlier stages [18, 51–53]. A prior systematic review concluded that sRAGE
is a strong biomarker of emphysema, but only in patients with airflow limitation [14]. Furthermore,
peripheral plasma samples of individuals from the COPDGene population have been assessed for the
association of specific biomarkers with emphysema noted on computed tomography (CT) imaging
(percentage low lung attenuation ⩽−910 HU). Patients with more emphysema had lower sRAGE and
intercellular adhesion molecule-1 levels [45]. These results were further validated in the Treatment of
Emphysema with a Gamma-Selective Retinoid Agonist (TESRA) cohort [45] (table 1).

RAGE correlates with severity of emphysema
In the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) cohort of
COPD patients, the change in CT lung density and severity of emphysema over the study period was
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correlated with a number of circulating biomarkers. At baseline, patients with higher levels of sRAGE and
surfactant protein D had less emphysema, while lower levels of CCL-18 correlated with more severe
disease. Elevated sRAGE, fibrinogen and IL-6 levels at baseline were associated with less progression of
emphysema [48].

In another study, serum samples of patients with stable COPD, smokers without COPD and nonsmoking
controls were compared for specific biomarkers. Extracellular RAGE-binding protein (EN-RAGE) and
sRAGE levels were significantly different between those groups as well as at various stages of COPD.
Overall, sRAGE levels were reduced in COPD patients and were more associated with variability in DLCO

values. On the contrary, EN-RAGE levels were significantly elevated in severe COPD and more associated
with FEV1 and FEV1/forced vital capacity (FVC) values. These findings suggest that sRAGE and
EN-RAGE may affect different lung function measures (airway obstruction or diffusion capacity) [49]
(tables 1 and 2).

Role of sRAGE in WTC-PM exposed firefighters
Our group has identified RAGE as a biomarker of WTC-PM induced FEV1 decline. Using a case–cohort
design, we studied a cohort of never-smoking male FDNY firefighters exposed to WTC dust with normal
pre-9/11 lung function. The odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with
sRAGE ⩾97 pg·mL−1, C-reactive protein ⩾2.4 mg·L−1 and matrix metalloproteinase-9 ⩾397 ng·mL−1,
respectively. We concluded that increased sRAGE is associated with WTC-LI [6] (tables 1 and 2).

RAGE is a biomarker of vascular injury
A pilot study examined patients with COPD, smokers without COPD and nonsmokers who had renal
biopsy or nephrectomy. They measured AGE-RAGE and tissue oxidative stress levels in pulmonary and
renal endothelial cells and showed that they were indeed elevated in the COPD group. In addition, they
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FIGURE 1 Flow diagram as per PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [40]. OAD: obstructive airways disease; AGER: advanced glycation end-product receptor.
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TABLE 1 Relevance of the receptor for advanced glycation end-products (RAGE) in obstructive airways disease secondary to environmental exposure

First author,
year [ref] Country

Population/exposure
/design

Study size
(number of
subjects) Specimen/assay End-points Significant findings

Caraher,
2017 [6]

USA FDNY, WTC-PM, case
cohort

185 Serum/Luminex FEV1 Odds of developing WTC-LI increased by 1.2,
1.8 and 1.0 in firefighters with sRAGE
⩾97 pg·mL−1, CRP ⩾2.4 mg·L−1 and MMP-9
⩽397 ng·mL−1, respectively

Lee, 2016
[41]

Taiwan COPD, PM10,
retrospective case–

control

58 Serum, ELISA FVC, FEV1/FVC, RV/TLC, DLCO,
ΔSaO2,

8-isoprostane,
IL-6, RAGE, carbonyl oxidation,
ubiquitin, proteasome, beclin-1

Exposure to elevated levels of PM10 was
associated with reduced circulating RAGE
levels

Polverino,
2017 [42]

USA COPD, cigarette
smoke, longitudinal

82 Lung,
IHC

UACR, eGFR,
AGE-RAGE in pulmonary/renal ECs

↑immunostaining of AGE and RAGE in ECs of
COPD cases

Hoonhorst,
2016 [43]

The
Netherlands

COPD, cigarette
smoke, longitudinal

288 blood/sputum/bronchial
biopsies, ELISA/IHC

AGE, sRAGE,
lung function

Low sRAGE is associated with COPD and
impaired lung function

John, 2016
[44]

UK COPD, cigarette
smoke,

cross-sectional

291 Blood, IHC PWV, BP, skin autofluorescence,
sRAGE, lipids

Cardiovascular risk prediction score and
sRAGE levels were the same COPD and
non-COPD smokers

Carolan,
2014 [45]

USA COPDGene, cigarette
smoke,

cross-sectional

588 Plasma, custom assay by
Myriad-RBM

%LAA, LP15A, sRAGE Patients with more emphysema had lower
sRAGE and ICAM1 levels

Iwamoto,
2014 [46]

Finland COPD, cigarette
smoke, longitudinal

295 Plasma FEV1, FVC, FEV1/FVC, sRAGE Lower sRAGE predicts greater progression of
airflow obstruction

Chen, 2014
[47]

China COPD, cigarette
smoke, ex-vivo

40 Lung, HBE/ IHC/ELISA/
Western blot

FEV1, FVC, FEV1/FVC, RAGE,
NO generation

Overexpression of RAGE contributes to
smoking-induced NO generation in COPD

Coxson, 2013
[48]

Multiple ECLIPSE, cigarette
smoke, longitudinal

1285 Serum, ELISA Lung density on CT scan Elevated sRAGE, fibrinogen and IL-6 levels at
baseline were associated with less
progression of emphysema

Cockayne,
2012 [49]

Germany COPD, cigarette
smoke, prospective
observational study

185 Serum,
multiplex

FEV1, FEV1/FVC,
DLCO, 142 analytes

sRAGE and EN-RAGE were two out of seven
biomarkers that showed significant
differences between severe/very severe
COPD, mild/moderate COPD, smoking and
nonsmoking control groups; sRAGE and
EN-RAGE affect different lung function
measures

Miniati, 2011
[50]

Italy COPD,
cigarette smoke,
case–control

401 Plasma,
ELISA

FEV1, FEV1/FVC, DLCO, emphysema
severity, sRAGE

sRAGE is significantly lower in patients with
COPD than in age- and sex-matched
individuals without obstruction
Emphysema is an independent predictor of
reduced sRAGE in COPD

Ohlmeier,
2010 [51]

Finland IPF/UIP/COPD/AAT 49 Lung,
2-dimensional

electrophoresis, mass
spectrometry, Western

blot, ELISA

RAGE Three RAGE variants (FL-RAGE, cRAGE,
esRAGE) are important in IPF. The decline
of FL-RAGE and cRAGE, but not esRAGE, in
COPD lungs is evidence of the involvement
of specific RAGE variants in this disease

Continued

https://doi.org/10.1183/16000617.0096-2018
5

O
B
STR

U
C
TIVE

A
IR
W
AYS

D
ISEA

SE
|
S.H

.H
A
ID
ER

ET
A
L.



TABLE 1 Continued

First author,
year [ref]

Country Population/exposure
/design

Study size
(number of
subjects)

Specimen/assay End-points Significant findings

Ferhani,
2010 [18]

France COPD,
cigarette smoke, N/A

70 Lung,
Western blot, ELISA,

Luminex, IHC, BAL, EC,
AM

HMGB1, IL-1β, RAGE Elevated HMGB1 expression in COPD airways
may sustain inflammation and remodelling
through its interaction with IL-1β and RAGE

Zhang, 2014
[52]

China COPD,
cigarette smoke, N/A

102 Plasma/serum, ELISA FEV1, FEV1/FVC, HMGB1, sRAGE,
hsCRP, fibrinogen

HMGB1 and sRAGE levels were dynamically
changed between exacerbation and
convalescence phases of COPD

Boschetto,
2013 [53]

Italy COPD, CHF, COPD +
CHF, cigarette smoke,

N/A

143 Plasma,
ELISA

sRAGE, CML, BNP Plasma levels of sRAGE and CML are
increased in CHF, but not COPD patients

Cho, 2015
[54]

Multiple COPDGene, ECLIPSE,
NETT, GenKOLS,

cigarette smoke, N/A

12031 GWAS Loci associated with emphysema The AGER locus was related to an
emphysematous phenotype

Hardin, 2012
[55]

Poland COPD,
cigarette smoke, N/A

645 Blood,
TaqMan

FEV1, FEV1/FVC, SNPs
COPD and COPD-associated
phenotypes, SNPs previously

associated with lung function in
GWAS and COPD were assessed

In patients with severe COPD, there is an
association between two SNPs previously
associated with COPD (CHRNA3/5 and
IREB2), as well as an association with
COPD of one locus initially associated with
lung function (ADCY2)

Li, 2014 [56] China COPD,
cigarette smoke, N/A

455 WBC genomic DNA/
PCR-RFLP

FEV1, FVC, FEV1/FVC G82S polymorphism in the RAGE gene is
associated with increased risk of COPD; GS
genotype of the G82S variant is a COPD
risk factor

Miller, 2016
[57]

UK COPD,
cigarette smoke, N/A

992 Lung/serum, IHC, PCR,
ELISA

Alveolar RAGE,
AGER splicing, sRAGE

AGER splicing, Ser82 allele associated with
increased FEV1 and FEV1/FVC ratio and
decreased sRAGE

FDNY: Fire Department of New York; WTC-PM: World Trade Center-particulate matter; FEV1: forced expiratory volume in 1 s; WTC-LI: WTC lung injury; sRAGE: soluble RAGE; CRP:
C-reactive protein; MMP: matrix metalloproteinase; COPD: chronic obstructive pulmonary disease; PM10: particulate matter <10 µm in aerodynamic diameter; FVC: forced vital capacity;
RV: residual volume; TLC: total lung capacity; DLCO: diffusing capacity of the lung for carbon monoxide; ΔSaO2: change in arterial oxygen saturation; IL: interleukin; IHC:
immunohistochemistry; UACR: urinary albumin/creatinine ratio; eGFR: estimated glomerular filtration rate; AGE: advanced glycation end-products; EC: endothelial cells; PWV: pulse wave
velocity; BP: blood pressure; %LAA: percentage low lung attenuation; LP15A: 15th percentile on lung attenuation curve; ICAM: intercellular adhesion molecule; HBE: human bronchial
epithelial cells; NO: nitric oxide; ECLIPSE: Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints; CT: computed tomography; EN-RAGE: extracellular RAGE-binding
protein; IPF: idiopathic pulmonary fibrosis; UIP: usual interstitial pneumonia; AAT: α1-antitrypsin; FL-RAGE: full-length RAGE; cRAGE: C-terminal processed RAGE; esRAGE: endogenous
secretory RAGE; N/A: not applicable; BAL: bronchoalveolar lavage; AM: alveolar macrophages; HMGB: high mobility group box; hsCRP: high-sensitivity CRP; CHF: congestive heart
failure; CML: N-(carboxymethyl) lysine adducts; BNP: brain natriuretic peptide; NETT: National Emphysema Treatment Trial; GenKOLS: Genetics of Chronic Obstructive Lung Disease;
GWAS: genome-wide association studies; AGER: advanced glycation end-products receptor; SNP: single nucleotide polymorphism; CHRNA: cholinergic receptor nicotinic α1 subunit;
IREB: iron-responsive element-binding protein; ADCY: adenylate cyclase; WBC: white blood cell count; RFLP: restriction fragment length polymorphism.
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revealed similar findings in the cigarette smoke-exposed mice. The investigators concluded that COPD
patients and cigarette smoke-exposed mice have pulmonary and renal endothelial cell injury associated
with the tissue oxidative stress AGE-RAGE pathway [42].

Correlation of RAGE and nitric oxide generation
The role of RAGE in cigarette smoke-induced nitric oxide (NO) generation was studied by assessing the
bronchial epithelia of smokers with COPD and compared to healthy smokers and nonsmokers with
COPD. RAGE overexpression was noted only in smokers with COPD and positively correlated with NO
levels, smoking status and lung function decline. Human bronchial epithelial cells that were cultured in
cigarette smoke extract had low sRAGE levels, but enhanced RAGE and NO levels. Interestingly, increased
NO level and NO synthase activity were all reversed by pretreatment with anti-RAGE antibody [47].

Accumulation of RAGE in different body compartments
One study assessed AGE and sRAGE levels in plasma, sputum, bronchial biopsies and skin and tested
whether differential tissue accumulation is associated with COPD [43]. Skin autofluorescence of AGE and
sRAGE in blood and sputum was measured by ELISA, and by immunohistochemistry in the bronchial
biopsies. COPD patients had increased accumulation of AGE in the skin compared to non-COPD smokers
and never-smokers. This difference in expression was not seen in bronchial tissues of different groups.
Lower FEV1 % predicted and FEV1/FVC ratio were independently associated with a higher AGE levels in
skin [43]. sRAGE levels were significantly lower in the plasma of COPD patients compared to young and
old healthy subjects. Additionally, these levels were negatively correlated with the severity of COPD.
Patients with lower sRAGE levels had lower FEV1, lower DLCO and higher AGE accumulation in the skin.
The authors hypothesised that sRAGE has a protective effect and functions as a decoy receptor, preventing
accumulation of AGE in the skin [43].

TABLE 2 Associations between receptor for advanced glycation end-products (RAGE), soluble (s)RAGE and disease state

RAGE sRAGE Summary

OAD Positive Negative Lungs of patients with OAD (COPD and CF) have increased levels of RAGE [4, 21]
OAD-associated airway inflammation is associated with lower levels of sRAGE in CF patients

[22, 23]
None of the identified studies focused or included asthma as a clinical end-point

Asthma Positive Negative Neutrophilic asthma in humans is associated with lower levels of sRAGE [13]
RAGE expression is associated with increased downstream inflammatory effects, reflective of

an asthmatic profile [15, 16]

COPD Positive Negative COPD is associated with RAGE overexpression [48]
sRAGE levels are reduced in COPD patients [43]
RAGE SNPs are positively associated with COPD [55, 56]

CVD Inconsistent sRAGE and CVD outcome are inconsistent [44]

Emphysema Negative Negative Lower RAGE is associated with more emphysema [45]
Higher sRAGE is associated with less emphysema and less disease progression [48]

WTC-LI Positive Positive Absence of RAGE is protective against loss of lung function in a murine model [6]
Increased sRAGE is associated with WTC-LI development [6]

Pulmonary fibrosis Negative AGER−/− mice develop fibrosis in an asbestos-exposure model [30]

NO generation Positive Negative COPD smokers had higher RAGE and NO levels [47]
In vitro cigarette smoke exposure led to low sRAGE and high RAGE and NO levels [47]

FEV1 and FEV1/FVC Positive Inconsistent Ser82 RAGE variant is associated with higher FEV1 [57]
Lower sRAGE levels are associated with longitudinal decline of FEV1 in COPD smokers and

FEV1/FVC in all subjects [46]
COPD patients with lower sRAGE levels had higher FEV1 [43]

OAD: obstructive airways disease; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; WTC-LI: World Trade Center
lung injury; NO: nitric oxide; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; CF: cystic fibrosis; SNP: single nucleotide
polymorphism; AGER: advanced glycation end-products receptor.
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RAGE as a biomarker of cardiovascular disease in COPD
The results of studies assessing sRAGE and cardiovascular disease are heterogeneous. One study looked
specifically at COPD patients and non-COPD smokers with calculated cardiovascular risk prediction
scores [44]. The cardiovascular risk prediction scores and sRAGE levels were the same in both groups.
They found no associations between sRAGE and diabetes or aortic pulse wave velocity [44]. In the absence
of ischaemic heart disease or diabetes, COPD patients had significantly lower levels of sRAGE, which is
consistent with prior literature.

sRAGE as a marker of longitudinal loss of lung function
A longitudinal cohort study of nonsmokers, smokers without COPD and smokers with COPD in northern
Finland was performed with measurements of high mobility group box (HMGB)1 (a ligand of RAGE),
sRAGE, and lung function testing. There were no significant differences in the HMGB1 levels between the
study groups, but patients with severe airflow obstruction had higher levels than others [46]. This result is
consistent with prior findings. Lower sRAGE levels were associated with longitudinal decline of FEV1/FVC
ratio in all groups (table 2). This was particularly evident in smokers with COPD, as lower sRAGE levels
predicted longitudinal decline in FEV1.

Genetic polymorphism of RAGE in COPD
The genetic polymorphism of RAGE is less well studied in COPD compared to inflammatory diseases
such as Crohn’s disease. There are 1517 single nucleotide polymorphisms (SNPs) detected in the RAGE
gene, but they are mostly nonsense mutations [56]. Three functional SNPs in the promoter region (−429
T/C and −374 T/A) and one SNP in exon 3 (G82S) of the AGER gene have been studied. One study in a
Chinese population showed that G82S polymorphism was significantly higher in COPD patients and
associated with higher risk of developing COPD in current smokers [56]. In another study of a Polish
population with severe COPD, a number of SNPs associated with lung function were investigated
including AGER, ADCY2 and THSD4. They identified associations between CHRNA3/5, IREB2, FAM13A
and COPD, as well as ADCY2 with severe COPD [55]. A GWAS on two quantitative emphysema and
airway imaging phenotypes using the COPDGene, ECLIPSE, National Emphysema Treatment Trial
(NETT) and Genetics of Chronic Obstructive Lung Disease (GenKOLS) cohorts found five loci of interest.
AGER was associated with COPD and spirometric measures related to airflow obstruction as well as
emphysema and sRAGE levels [54]. Furthermore, the Ser82 RAGE variant was associated with higher
FEV1, FEV1/FVC ratio and lower serum sRAGE levels in UK smokers. The investigators also found that
HMGB1 activation of the RAGE-Ser82 receptor resulted in lower sRAGE levels.

RAGE as a biomarker of asthma
Although asthma was not the clinical focus of any of the studies that met all inclusion/exclusion criteria of
our systematic review, the development of an asthmatic phenotype may occur in the context of an
environmental exposure. In the review of this literature we found that patients with neutrophilic asthma and
COPD had significantly lower levels of sRAGE in BAL, plasma and serum relative to healthy controls and
those with non-neutrophilic asthma and COPD. HMGB1, a potent mediator of neutrophilic inflammatory
response and a RAGE ligand, was slightly increased in neutrophilic patients. Consistent with our
understanding of the role of sRAGE, lack of inhibition of downstream inflammatory effects of RAGE may
play a role in development of neutrophilic asthma [13]. In addition, RAGE has been implicated in the
pathophysiology of eosinophilic asthma. In a murine model, wild-type (WT) and RAGE knockout mice were
exposed to house dust mite (HDM) extract and sensitised with ovalbumin. HDM-exposed WT mice
exhibited increased airway resistance and small airway tissue damping in response to methacholine challenge
relative to RAGE knockouts. Absence of RAGE was associated with absence of inflammatory infiltrates, lack
of elevated mucin expression or goblet cell hyperplasia. IL-5, IL-13 and eotaxin were significantly elevated in
HDM-exposed WT mice, and to a lesser degree in RAGE knockout mice [15]. In another murine study, WT
and RAGE knockout mice were sensitised with ovalbumin. The WT mice exhibited significantly elevated
levels of interferon-γ and IL-5 when compared to RAGE knockout mice [16] (table 2).

Discussion
Our systematic review identified 19 original articles where the role of RAGE is found to be important in
the development of environmental exposure related OAD. These studies differed significantly in the
populations, methods and outcomes that were studied (table 1). However, these studies allow us to further
define the role of RAGE in the development of OAD related to a heterogeneous environmental exposure.
These studies suggest that RAGE may be a multifaceted contributor to OAD development.

Particulate matter exposure causes systemic inflammation, endothelial dysfunction and subsequent
end-organ damage leading to OAD [58–60]. These effects are particularly evident as loss of lung function
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associated with WTC-PM exposure [61–72]. There is mounting evidence that RAGE is a biologically
plausible mediator of inflammation and vascular injury, and is associated with conditions such as
metabolic syndrome and OAD.

In most organs, RAGE is expressed at low baseline levels and increases with disease activity as seen in the
lungs of COPD patients [4]. The highest expression of RAGE occurs in the lungs, but its deleterious
effects are not just limited to this organ. For instance, AGE-RAGE levels are elevated in the pulmonary
and renal endothelial cells of patients with COPD [42]. Accumulation of AGEs in different organs appears
to vary and correlates with the levels of circulating sRAGE. A prior study showed that accumulation of
AGEs in the skin is directly correlated with low circulating sRAGE levels in COPD patients. This has led
to the hypothesis that sRAGE acts a decoy receptor and appears to be protective against the inflammatory
effect of membrane bound RAGE. Patients with higher PM exposure and associated COPD have lower
levels of sRAGE. These levels correlate well with severity of COPD and predict longitudinal decline in
FEV1 (tables 1 and 2).

A finer understanding of the RAGE pathway and its role in inflammation-associated OAD may allow us to
identify therapeutic targets to halt progression of diseases such COPD. In one study, administration of
sRAGE or deletion of the RAGE gene mitigated LPA–RAGE interaction and disease development [33].
RAGE has been the focus of targeted therapeutic trials [9, 73–75].

RAGE is a key mediator of MetSyn, which affects >30% of adults in the United States [76–78]. A diet high
in caloric content is a key contributor to MetSyn. Several groups are actively studying the MetSyn and
lung disease associated with environmental exposures. Several studies of WTC-exposed cohorts (a high
particulate exposed group) have described a high incidence of obesity [77, 79]. In addition, we found that
a multimetabolite model was able to differentiate between those with WTC-LI and those without [72].
One of the key mediators of the metabolome is diet, and we know that dietary interventions that have
focused on weight loss in obstructed patients show improvement of both FEV1 and FVC by as much as
22% in as little as 15 days [80, 81]. Using a very low calorie diet, investigators have been able to achieve a
20 kg loss over a 6-month period; every 10% relative loss of weight led to a significant improvement of
FVC by 92 mL and FEV1 by 73 mL [82]. As patients decreased their body mass index from 37 to
32 kg·m−2, the mean morning FEV1 and FVC significantly increased [83]. Improvement of lung function
in obese subjects who undergo weight loss is due predominantly to changes in lung mechanics. Associated
biochemical changes that may play a role are active areas of investigation and are a focus of our future
work. Additionally, recent studies show the effectiveness of calorie-reduced and Mediterranean diets in
reducing lipid levels [84]. While moderating fats can be essential to maintaining a healthy diet, there is
extensive literature that explores the potential health benefits of high fats in a Mediterranean diet, such as
n-3 and n-6 polyunsaturated fatty acids [85, 86].

Systematic reviews have inherent biases that we addressed through the design of our search algorithm. Our
systematic review is affected by selection, detection, performance and reporting bias. Selection bias was
addressed by having a predetermined inclusion and exclusion criteria and distinct definitions. Detection
and performance bias were addressed by having at least two rounds of screening individually performed.
Reporting bias was addressed through PubMed and Embase search filters that included peer-reviewed
published articles that were written in English and which focused on human subjects. Removing duplicates
further limited reporting bias.

The development of OAD due to environmental exposure is a leading cause of morbidity and mortality
worldwide. RAGE is involved in the inflammatory cascade of events that lead to development of
obstructive airway disease. Soluble RAGE acts as a decoy receptor and may have a protective effect against
development of OAD. Patients with lower levels of soluble RAGE may have more severe COPD and
emphysema. By targeting RAGE-mediated inflammation, we may mitigate progression of OAD.
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