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ABSTRACT: A variety of animal models have been suggested as models of pulmonary

emphysema; these are critically discussed in the present article from a stereologist’s perspective.

In addition, a stereological design for the quantification of experimentally induced emphysema is

proposed.

On the basis of the widely accepted definition of pulmonary emphysema being an ‘‘abnormal

permanent enlargement of the airspaces distal to the terminal bronchioles, accompanied by

destruction of their walls,’’ quantitative morphology is the only method with which to reliably

assess the presence of emphysema. Recognising this, careful inspection of animal models that

are based on instillation of elastase, genetic alterations, inhalation of cigarette smoke or induction

of apoptosis, reveals that both criteria of emphysema definition were demonstrated in surprisingly

few of them.

Several aspects are suggested to be critical for the understanding of animal models of human

emphysema. For example, genetic models that rely on the inhibition of the formation of alveoli

during post-natal alveolarisation should clearly be distinguished from models that rely on the loss

of mature alveoli after alveolarisation is complete. Furthermore, inhalation models that are

characterised by exposed animals exhibiting a severe loss of body weight should carefully

examine the relative contribution of intervention and weight loss, respectively. Models that rely on

the exposure of juvenile animals for several weeks or even months should take into account the

effects of normal lung growth and ageing.

Stereology offers appropriate tools with which to quantify the parameters relevant to assess

development and the regeneration of emphysema. Stereologists continue to develop tools that

will help ascertain the reliability of established and new models. If inappropriate parameters

continue to be used for the evaluation of animal models of emphysema, thinking and resources

are likely to be misdirected and the models may limit rather than expand the understanding of

human emphysema and the development of new therapies.

KEYWORDS: Animal model, chronic obstructive pulmonary disease, emphysema, quantitative

morphology, stereology

C
hronic obstructive pulmonary disease
(COPD) is predominantly a disease of
the sixth decade of life and later [1]. It is

characterised by irreversible airflow limitation
measured during forced expiration, which is
caused by either an increase in the resistance of
small airways due to chronic bronchitis or an
increase in lung compliance due to emphysema,
or both. Several types of emphysema are distin-
guished in humans; for example, centriacinar
emphysema, which is associated with tobacco
smoking, and panacinar emphysema, which is
most frequently seen in a1-antitrypsin (AT)
deficiency [1, 2]. The pathogenetic pathways
leading to emphysema are still a matter of debate
and, even more importantly, curative therapies

are still lacking [3]. For a better understanding of
the underlying pathogenetic processes and the
development of new therapeutic approaches,
various lines of research have been followed to
establish diverse animal models of emphysema.
These include the development of mutant or
transgenic animals, the induction of emphysema
by inhalation of cigarette smoke or other noxious
gases, by instillation of elastase or lipopolysac-
charide or by calorie restriction, as has been
comprehensively reviewed by others [4–9]. In the
present article, the validity of various animal
models is discussed on the basis of the quantitative
morphological parameters presented to support a
finding of pulmonary emphysema. In addition, a
stereological design for the quantification of
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experimentally induced emphysema is proposed that comprises
a basic set of parameters necessary for the conclusive interpreta-
tion of structural changes.

DEFINITION OF EMPHYSEMA AND ITS CONSEQUENCES
FOR QUANTIFICATION
Pulmonary emphysema is anatomically defined as the ‘‘abnor-
mal permanent enlargement of the airspaces distal to the
terminal bronchioles, accompanied by destruction of their
walls’’ [10]. Both anatomical aspects can be assessed using
quantitative histopathology, which revealed airspace enlarge-
ment [11, 12] and loss of distal lung tissue, as reflected by a
significant loss of total alveolar surface area and total capillary
length [13], in human lungs. Therefore, the validity of a
potential animal model of emphysema has to be tested by
quantitative histopathological methods measuring both air-
space enlargement and destruction of the alveolar walls [14,
15]. Although an amplified inflammatory response is observed
even in patients with severe emphysema [1], the mere presence
of inflammatory cells characteristic of human COPD, such as
neutrophilic granulocytes, activated alveolar macrophages and
CD8+ T-lymphocytes, cannot be considered to be a conclusive
indicator of emphysema alone.

Unfortunately, most of the experimental studies in animals
presented to date rely on the quantification of airspace
enlargement alone, assessing mean linear intercept (MLI) or
mean linear chord (MLC) length as indices of airspace size.
Although sometimes used as synonyms, it must be taken into
account that MLC measures the ‘‘mean free path’’ within the
distal airspaces [16], i.e. alveoli and alveolar ducts taken
together, whereas the measurement of MLI comprises both
airspace and alveolar septum [17]. Thus, a reported MLC value
is always lower than the corresponding MLI value because
alveolar septal wall thickness contributes to the latter.
However, the use of MLI or MLC measurements to estimate
alveolar size is flawed; this has previously been discussed in
detail elsewhere [15, 18]. One major critique is that MLI and
MLC are inversely related to the surface/volume ratio of the
airspaces and therefore crucially depend on airspace shape, as
was pointed out recently by WEIBEL et al. [15]. Thus, differences
between experimental groups in MLI and MLC may result
either from changes in airspace size or from changes in
airspace shape, or both. With regard to MLI, any change may
also comprise a change in alveolar septal wall thickness. As
changes in the shape of distal airspaces is a common
characteristic associated with the formation of emphysema, it
is impossible to discriminate between changes in airspace size
or shape via the mere analysis of MLI or MLC [19]. Moreover,
parameters evaluating airspace size are highly sensitive to
inflation during fixation and tissue shrinkage during embed-
ding [20, 21], which is widely ignored today.

As airspace size increases with age [22, 23], ‘‘abnormal’’
enlargement can only be demonstrated compared with age-
matched control lungs, and ‘‘permanent’’ enlargement can
only be demonstrated when additional groups are imple-
mented to demonstrate the persistence of changes in airspace
size. In view of the anatomical definition, however, it is not
sufficient to reveal abnormal permanent airspace enlargement
alone to conclude that emphysema is present. Reliable
assessment of the presence of emphysema in any animal

model requires the destruction of alveolar walls to be
additionally demonstrated [14, 15], such as a decrease in total
alveolar wall volume, total alveolar surface area, total capillary
length and/or total number of alveoli [18, 24, 25].

ELASTASE INSTILLATION MODELS OF EMPHYSEMA
Elastase instillation was established .40 yrs ago by GROSS et al.
[26] to develop a model of emphysema in hamsters. The
establishment of this animal model had great impact on the
development of the proteinase–antiproteinase concept of
emphysema formation [27]. Since then, it has been adapted
by many others. The attractiveness of this model is that a single
hit, the instillation of a bolus of an elastolytic proteinase, such
as porcine pancreatic or human neutrophil elastase, results in
the loss of alveolar walls, as judged by stereology [24], whereas
nonelastolytic proteinases failed to induce emphysematous
lesions [28]. However, the desired effect of elastase is
frequently limited to a narrow window of dosage, below
which no significant loss of alveoli is observed, whereas a
higher dose may result in severe pulmonary haemorrhage and
high mortality [29, 30].

Notably, although MASSARO and MASSARO [31] observed an
increase in the mean alveolar volume by ,240%, which was
associated with a decrease in the total number of alveoli by
,45% after elastase treatment of rat lungs using a selector
approach for quantification, total alveolar surface area was
insignificantly decreased by only 5%. MASSARO and MASSARO

[31] explained this discrepancy through the low elastic recoil of
elastase-treated lungs (inferred from the increased fixed lung
volume per body weight), which allowed overexpansion of the
lung. Overexpansion can be expected to result in a stretch-
related decrease in the arithmetic mean thickness of the
alveolar wall tissue, which should not be observed if the
increase in lung volume was the result of a growth process
[32]. In turn, total volume of alveolar wall tissue can be
expected to increase during growth but should not be affected
by overexpansion, which can be expected to result in
decreased thickness, increased surface area but constant total
volume of alveolar walls. Unfortunately, MASSARO and
MASSARO [31] did not analyse volume or arithmetic mean
thickness of alveolar wall tissue in response to the instillation
of elastase.

Although the importance of elastolytic proteinases for the
formation of emphysema has been highlighted by the initial
findings of the destructive effects of elastases in this model, it
is only of limited value to study the pathogenetic mechanisms
involved in the development of the disease. Conversely, this
model appears to be ideal for testing new therapeutic
approaches to enhance alveolar regeneration within a reason-
able amount of time (as compared with cigarette smoke
exposure models (discussed further later)). Animals can be
used for therapeutic studies ,3 weeks after the initial injury
(see the Regeneration of alveoli section).

GENETIC MODELS OF EMPHYSEMA
Although exposure to noxious environmental agents, such as
cigarette smoke, is a major risk factor for the development of
COPD, several lines of evidence strongly suggest that suscept-
ibility to developing the disease also depends on genetic
factors [33]. Accumulating evidence from both human studies
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[34, 35] and comparative studies of various mouse strains [36]
supports the notion that there is a heritability component of
pulmonary function. Genome-wide linkage analysis in mice
has identified genetic loci that comprise candidate genes,
which are closely related to processes involved in morpho-
genesis and maintenance of lung structure [36, 37]. Notably,
recent studies reported significant differences in lung struc-
tural characteristics between mouse strains [38–40]. This
suggests that susceptibility to developing structural defects
might also exhibit a component of heritability.

The importance of genes for the development of emphysema is
highlighted by the finding that several naturally occurring
mutant mouse strains have been reported to exhibit features of
pulmonary emphysema, as has been comprehensively
reviewed [4–6]. However, the mutants ‘‘tight-skin’’, ‘‘beige’’
and ‘‘blotchy’’, which have defects in genes that exhibit
features of Marfan’s syndrome (tight-skin with duplication of
fibrillin 1 gene), Chediak–Higashi syndrome (beige with
deletion in Lyst gene) and Menke’s disease (blotchy with
defect in the Menke gene) in humans, are characterised by
multiple effects in several organ systems. With the exception of
the mutant mouse strain ‘‘pallid’’, which was reported to have
low levels of serum a1-AT associated with a severe deficiency
in serum elastase inhibitory capacity [41], the relevance of
these mutant strains for the pathogenesis of human lung
emphysema is uncertain. To the best of the author’s knowl-
edge, no attempt has been made to demonstrate emphysema in
these strains using a stereological approach.

With the establishment of transgenic mouse technologies, a
number of candidate genes thought to be involved in the
pathogenesis of COPD and emphysema have been studied by
generating mice that are either deficient in or overexpress the
gene of interest, as has been comprehensively reviewed [8, 42–
44]. When studying mutants or transgenic animals, the analy-
sis of the time course of the formation of an emphysema-like
phenotype is of major importance to distinguish develop-
mental defects [45] that result in the impairment of alveolar-
isation, from the loss of (already formed) mature alveoli, which
is characteristic of human pulmonary emphysema [44].

Alveolarisation, the formation of mature alveoli from primary
sacculi, is achieved by secondary septa sprouting into the
saccular airspaces, thus subdividing a sacculus into several
alveoli [46]. In humans, rats and mice, a sudden and extensive
formation of alveoli, which has been termed ‘‘bulk alveolarisa-
tion’’, is observed during early post-natal life. In humans, it
starts at about foetal week 36 and continues until a post-natal
age of ,1–2 yrs. In rats and mice, bulk alveolarisation begins at
about day 4 after birth and is completed by post-natal day 14.
Formation of alveoli appears to continue at a slower rate until
the final lung volume is achieved [47]. Therefore, only
genetically modified animals that exhibit normal post-natal
alveolarisation followed by a secondary loss of mature alveoli
can be considered as valid models of human lung emphysema.

The distinction between developmental defects and the loss of
mature alveoli is not possible using conventional transgenic
animals, in which the gene of interest is either active or
deficient during all stages of lung development. This can be
achieved by using conditional transgenic animals [48]. In the

tetracycline (tet)-inducible system, mice carrying the transgene
of interest under control of the tet-operator (tetO) are bred with
transgenic mice carrying the reverse tetracycline response
transactivator (rtTA) under the control of a cell/tissue-specific
promoter. Transgene expression is induced only in bitrans-
genic mice after treatment with doxycycline, which enables
rtTA to bind to tetO elements and activate transcription. In
such an approach, a cell-specific promoter (driving rtTA
expression) is combined with the timing of doxycycline
administration or withdrawal, and permits the transgene to
be switched either ‘‘on’’ or ‘‘off’’ in subsets of cells (e.g. alveolar
type II epithelial cells or bronchiolar Clara cells) at a given
time-point during development or post-natal life [49]. A
variation of this approach is conditional gene deletion using
the loxP/cre-recombinase system, which allows temporal and/
or cell-specific silencing of the targeted gene. This approach
facilitates the study of genetic loci, which, when disrupted,
produce embryonic lethality [43]. However, the potentially
adverse effects of rtTA or cre-recombinase expression alone
and the need to study all the appropriate genetic (and
doxycycline) controls have been highlighted recently [50, 51].

Numerous studies are published each year that claim a specific
transgenic mouse strain demonstrates development of sponta-
neous emphysema or is characterised by increased or
decreased susceptibility to develop emphysema upon cigarette
smoke inhalation. Unfortunately, most of these studies report
only measurements of MLI or MLC, on the basis of which the
development of emphysema cannot be concluded convin-
cingly, as previously outlined. Only a few studies used
stereological approaches to clearly demonstrate that a loss of
alveolar walls is present in transgenic mice [25, 52, 53].
For example, OCHS et al. [25] and JUNG et al. [53] used the
whole armamentarium of design-based stereological tools to
demonstrate that 12-week-old mice, which were deficient in
surfactant protein (SP)-D or granulocyte-macrophage colony-
stimulating factor, or both, had significantly reduced alveolar
surface area, alveolar number and increased number-weighted
mean alveolar volume in comparison with age-matched wild-
type mice. As qualitative [54, 55] and quantitative stereological
studies (C. Klisch and H. Fehrenbach, both Clinical Research
Group "Chronic Airway Diseases", Dept of Internal Medicine
(Respiratory Medicine), Philipps-University of Marburg,
Marburg, Germany; personal communication) revealed that
alveolarisation was normal in SP-D-deficient mice, this
transgenic mouse strain can indeed be considered as a model
of human emphysema. The deficiency in SP-D was shown to
be associated, for example, with a three-fold increase in the
number and number-weighted mean volume of alveolar
macrophages [25], and increased activity of matrix metallo-
proteinase (MMP)-9 and -12 from alveolar macrophage
conditioned medium, whereas enzymatic activity in broncho-
alveolar lavage fluid and mRNA expression of MMP-2 and -9
were similar to wild-type mice [54]. As hydrogen peroxide
production of alveolar macrophage was increased by ,10-fold
in mice deficient of SP-D, translocation of transcription factor
nuclear factor (NF)-kB into the nucleus was increased, and
nuclear extracts exhibited increased NF-kB-binding activity in
gel shift assays, MMP production appears to be enhanced via
the reactive oxidant’s species-sensitive NF-kB pathway in
alveolar macrophages [55]. In contrast to these findings, in
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SP-D-deficient mice, recombinant rat SP-D was shown to
selectively induce MMP-1, -3 and -12 in alveolar macrophages
but not in peripheral blood monocytes of human smokers or
human fibroblasts in vitro. This suggests that either SP-D has a
similar effect on tissue inhibitors of MMPs (TIMP), which are
important to counterbalance the effects of MMPs [56], or that
SP-D deficiency indirectly augments MMP expression via
aberrant surfactant turnover and the elaboration of pro-
inflammatory cytokines [57]. As nothing is known about the
expression and activity of TIMPs in SP-D-deficient mice,
however, it is still unclear how these effects are regulated by
SP-D in vivo.

INHALATION MODELS OF EMPHYSEMA
Cigarette smoking is by far the most common cause of COPD
in Westernised countries, accounting for ,95% of cases [58],
and it is a major risk factor for the development of lung cancer
[59]. Hence, cigarette smoke exposure of experimental animals
has been an attractive approach to studying carcinogenesis, as
well as the pathogenetic pathways leading to one or more of
the three pathological aspects of COPD seen in humans, i.e.
mucus plugging, chronic obstructive bronchiolitis and emphy-
sema [60].

With the single exception of the A/J mouse strain [61, 62],
chronic exposure to cigarette smoke failed to increase the
incidence of malignant tumours in the respiratory tract in mice,
rats, hamsters, dogs and nonhuman primates as reviewed by
COGGINS [63, 64]. Despite considerable variation in the specific
pulmonary responses to acute or chronic cigarette smoke
exposure [7, 8, 65, 66], there is no doubt that cigarette smoke
adversely affects the lungs of laboratory animals in various
ways, including the induction of airway wall inflammation
and epithelial cell alterations, like goblet cell metaplasia.
Formation of emphysema as an effect of chronic cigarette
smoke exposure, however, has conclusively been demon-
strated by surprisingly few studies (table 1).

There are various reasons for the high degree of variability in the
response to acute or chronic cigarette smoke exposure. First,
cigarette smoke is a highly complex mixture of solid/liquid
droplets (particulate phase) in a gaseous phase [71]. There are
marked differences between main-stream smoke (the smoke
that emerges from the mouth end of the cigarette during
puffing), side-stream smoke (the smoke that emerges from the
lit end of the cigarette between puffs) and environmental
tobacco smoke (the mixture of side-stream smoke and exhaled
main-stream smoke diluted in ambient air, the physical and
chemical properties of which considerably change with time
(ageing effects)). Therefore, even in acute exposure experiments,
comprehensively reviewed recently [65], the choice of smoke
used for exposure, as well as the specific mode of exposure, such
as nose-only or whole-body exposure, are important factors
modulating the lungs’ response. This is also true for, for
example, the brand and number of cigarettes, exposure time,
time between exposure and measurement, species, strain, sex
and age of the animals exposed.

Secondly, as the induction of emphysematous lesions by
cigarette smoke requires exposure times of at least several
months, it must be taken into account that significant
interferences with age-dependent changes in lung morphology

may occur and a valid interpretation of the data obtained may
be very difficult. A number of studies reported the develop-
ment of airspace enlargement, judged from MLI or MLC
measurements, as an effect of chronic exposure to cigarette
smoke. As mentioned previously, however, such data provide
insubstantial evidence to conclude that emphysema had
developed. This has been highlighted recently in a stereo-
logical study [32] of the effects of inhaled nitrogen dioxide
(NO2), an important gaseous component of cigarette smoke
[72], which clearly demonstrated that airspace enlargement in
rat lungs exposed to NO2 can be associated with accelerated
lung growth instead of loss of alveolar septal walls. In the
study by FEHRENBACH et al. [32], as in most studies performed
in the field of emphysema research, animals were 8–10 weeks
of age at the beginning of exposure, i.e. they were juvenile not
adult individuals. After completion of bulk alveolarisation (by
,3 weeks of age in rats and mice), the lung continues to grow
until adulthood (,5–6 months of age in rats and mice) [22, 46,
73]. This is accompanied by a considerable increase in most of
the structural parameters, such as total alveolar surface area,
total alveolar wall volume or total capillary length [22]. Recent
data indicate that alveoli, too, are continuously formed until
the lung reaches its final volume [47, 74]. Age-related changes
in airspace size are also well documented in humans [23], as
are age-related changes in lung function [75]. Both age-
dependent decline in lung function and increase in airspace
size are significantly accelerated in smokers [12, 76]. As chronic
inhalation experiments require a total exposure time of several
weeks to months, as with cigarette smoke exposure for
example, appropriate age-matched and follow-up groups
should be implemented in such studies to be able to
distinguish a loss of (already existing) alveolar walls and
accompanying airspace enlargement from any effect caused by
the inhibition or acceleration of lung growth and ageing.
Despite some intriguing similarities, lung changes that evolve
with age should be clearly distinguished from changes related
to the development of a disease like COPD or emphysema, as
was emphasised recently [77].

Only a few studies are available that demonstrate a decrease in
total alveolar surface area and/or total alveolar septal tissue as
a consequence of chronic exposure to cigarette smoke (table 1).
Interpretations based on relative parameters, such as surface
area per unit volume, and volume of airspace or septal tissue
per unit volume of lung or parenchyma, are quite meaningless,
as differences between groups may rely on changes in the
nominator or denominator, or both (further discussed in the
article by NYENGAARD and GUNDERSEN [78] in the present issue
of the European Respiratory Review (ERR)). For example,
although FORONJY et al. [79] observed changes in relative
structural parameters, they did not find any changes in lung
compliance, extracellular matrix and apoptosis in A/J mice
exposed to cigarette smoke for 6 months. This may simply
reflect that the parameters chosen are not suitable to detect
emphysema, rather than that these results suggest the
mechanisms involved in anatomic emphysema are distinct
from those that cause the loss of elastic recoil.

Long-term inhalation exposure to cigarette smoke is often
associated with a loss of body weight [80]. As starvation
(calorie restriction) alone results in an emphysema-like
appearance of the lung [81], which is completely restored after
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refeeding [82], weight loss in long-term inhalation exposures
may alone result in emphysematous changes of lung paren-
chyma. Appropriate calorie-restricted control groups may be
necessary to distinguish effects caused by inhalation alone
from those effects that may ensue as a result of reduced food
consumption.

INDUCTION OF APOPTOSIS TO MODEL EMPHYSEMA
In their pioneering study, KASAHARA et al. [83] have demon-
strated that the experimental induction of apoptosis in pulmon-
ary endothelial cells by blockade of vascular endothelial growth
factor receptor 2 results in enlargement of distal airspaces, as
judged from measurements of MLI, thus opening up a new
perspective of thinking about the pathogenetic mechanisms of
emphysema [84–88]. While the concept of the protease–
antiprotease hypothesis relies on inflammation being the
primary event, which leads to the destruction of extracellular
matrix and subsequent loss of alveolar walls, KASAHARA et al. [83]
highlighted the possibility that destruction of alveolar walls can
occur in the absence of inflammation. Additional indication for
the importance of apoptosis in the pathogenesis of emphysema
came from several human studies, which demonstrated
increased levels of apoptotic alveolar septal cells in emphysema
patients [89–91]. To date, several groups have shown that
induction of endothelial or alveolar epithelial cell apoptosis also
results in an increase in MLI or in the mean diameter of alveolar
profiles [92–94], with both being highly biased parameters
(discussed further later). The effect of cigarette smoke exposure
in inducing alveolar septal cell apoptosis was controversially
discussed [95–97]. Unfortunately, none of these studies applied
an unbiased method to quantify emphysema [83–97].

Recently, the present author’s group has shown that exposure
of juvenile rats to NO2 resulted in an eight-fold increase of
alveolar septal cell apoptosis at day 3, which was associated
with a 14-fold increase in proliferation compared with age-
matched controls [32]. Although a 20% increase in MLC was
evident by day 7, this was not accompanied by a loss of
alveolar wall tissue. In contrast, exposure to NO2 resulted in an
increase in total surface area and absolute volume of alveolar
walls, indicating that normal lung growth was accelerated.
These findings clearly demonstrate that analysis of airspace
enlargement is insufficient to draw any firm conclusion on the
presence or absence of emphysema. The study further
indicates that an increase in apoptosis is difficult to interpret
per se and that proliferation as the other factor affecting the
balance of tissue homeostasis has to be analysed in parallel.
Notably, an increase in both proliferation and apoptosis was
observed in emphysema patients, indicating that cell turnover
is accelerated and may be out of balance [89, 90, 98].

REGENERATION OF ALVEOLI
To date, there is no curative therapy available that can restore
functional lung parenchyma that has been lost in an
emphysematous human lung. However, experimental studies
suggest that lost alveolar septal walls may be regenerated, e.g.
in starvation- or elastase-induced emphysematous rodent
lungs, by refeeding [99] or by treatment with all-trans-retinoic
acid [31], respectively. In their recent review, MASSARO and
MASSARO [100] emphasise that pulmonary alveoli can no longer
be considered as incapable of regeneration and that funda-
mental programmes of alveolar turnover (loss and regenera-
tion) are conserved from rodents to humans, which appears to

TABLE 1 Examples of quantitative histopathological studies recording more than mean linear intercept length in cigarette
smoke exposure in animal models

Species Sex Initial age Exposure SURS Resin Parameters [Ref.]

Regimen TPM Time V(lung) MLI

length

S(alv) V(sep) t̄(sep) N(alv)

Mouse B6C3F1 F 6–7 weeks wb-ex, 6h/d,

5d/wk

250 mg?m-3 7 months Yes P# q q « « ND ND [67]

13 months q q « «
Mouse C57BL/

6J

NI 3 months wb-ex, 3c/d,

5d/wk

NI 7 months No P NI q Q ND ND ND [68]

Mouse DBA/2J NI 3 months wb-ex, 3c/d,

5d/wk

NI 7 months No P NI q Q ND ND ND [68]

Mouse A/J F 7–8 weeks wb-ex, 6h/d,

5d/wk

250 mg?m-3 15 weeks Yes P# q q « « ND ND [69]

M q q (Q) (q)

Rat F344 F 6–7 weeks wb-ex, 6h/d,

5d/wk

250 mg?m-3 7 months Yes P# q (q) (q) (q) ND ND [67]

13 months q q (Q) (Q)

Guinea pig F Juvenile no-ex, 5c/d,

5d/wk

NI 13–16 weeks No P q ND (Q) Q ND ND [70]

TPM: total particulate matter; SURS: systematic uniformly random sample; V(lung): fixed lung volume; MLI: mean linear intercept; S(alv): total alveolar surface area; V(sep):

total alveolar septal tissue volume; t̄(sep): arithmetic mean thickness of alveolar septum; N(alv): total number of alveoli; F: female; M: male; NI: no information given; h/d:

hours per day; d/wk: days per week; c/d: cigarettes per day; wb-ex: whole-body exposure; no-ex: nose-only exposure; P: paraffin; ND: not done. q: increase; Q:

decrease; «: unchanged; parentheses indicate differences that do not reach the level of significance. #: data corrected for shrinkage.
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provide the basis for new therapeutic approaches to treating
emphysema.

As with the demonstration of a loss of alveolar structures in
animal models of emphysema, the demonstration of alveolar
regeneration can only be conclusive if appropriate parameters
are chosen, such as total alveolar septal tissue volume, total
alveolar surface area, or the number of alveoli per lung. Mere
demonstration of the restoration of airspace size indices, such
as MLI or MLC, which are critical parameters as previously
discussed in the present article and by others [15, 18], is largely
meaningless.

Taking into account the high interest of patients, researchers
and the pharmaceutical industry in the development of new
emphysema therapies, the question must be asked: is there
really good evidence to support the notion that alveoli can be
regenerated to restore a normal gas exchange area from an
emphysematous lung? MASSARO and MASSARO [100] refer to
several studies suggesting that alveoli can be regenerated from
elastase- or cigarette smoke-induced emphysematous rat and
mouse lung. Focusing on the morphological aspects of the
studies referred to by MASSARO and MASSARO [100], however,
the findings are only indicative, and not conclusive, of a
therapeutic effect. Regeneration of alveoli in elastase-induced
emphysema by systemic treatment of mice with all-trans-
retinoic acid [101, 102], adrenomedullin [103], granulocyte-
colony stimulating factor [101], or of rats with hepatocyte
growth factor [104] was inferred from the mere measurement
of MLI, from alveolar area and density, or from radial alveolar
counts, all highly bias-prone parameters. To date, systemic
application of all-trans-retinoic acid is the only therapeutic
intervention that has been demonstrated by means of unbiased
stereological tools to reverse some of the effects of elastase-
induced emphysema in rats [31]. However, subsequent studies
from other laboratories failed to reproduce these findings in rat
[105], mouse [69, 106, 107] and rabbit [108]. No effect of all-
trans-retinoic acid was seen in guinea pigs exposed to smoke
[70]. Two of the studies carried out in rats and mice were
performed by means of stereology [69, 105]. The reasons for the
discrepancies are still unclear.

There is good evidence to conclude that all-trans-retinoic acid
is able to reinitiate the formation of alveoli in rat and mouse
lungs treated with dexamethasone [109–111]. However, dex-
amethasone inhibits alveolar septation and induces premature
microvascular maturation when administered during the
period of post-natal alveologenesis [112, 113], thus being a
model of a developmental defect rather than of emphysema.
The beneficial effect of all-trans-retinoic acid in this model,
which is characterised by an inherent capacity of the lung to
resolve the defects after termination of (early) treatment [114,
115], should be clearly distinguished from any potential effect
to regenerate alveoli in models of emphysema where a loss of
(already existing) mature alveoli has to be compensated for.

STEREOLOGICAL DESIGN FOR THE QUANTIFICATION
OF EMPHYSEMA
Most of the following subjects discussed in this article are
addressed in more detail in the paper by NYENGAARD and
GUNDERSEN [78] in the present issue of the ERR, as well as in
two recent excellent reviews on the application of stereology to

the study of lungs [15, 116]. Therefore, only some selected
aspects, which are of particular interest for emphysema
research, are highlighted in the following sections.

Fixation
The size of the airspaces [20, 21], as well as the alveolar surface
area [117, 118], critically depends on the mode of fixation and the
degree of inflation of the lung. Therefore, it is important to assure
that the lungs to be studied are fixed at a well-defined state of
inflation using a standardised protocol. Fixation by intratracheal
instillation of fixative (preferably glutardialdehyde-based) at a
constant pressure of 20–25-cm fluid column is the method of
choice in most settings, although fixation by pressure-controlled
vascular perfusion at a defined state of inflation of the airspaces
will preserve lung parenchymal architecture in a more physio-
logical state [117, 118]. Instillation is easily performed and results
in quick and uniformly good preservation of lung tissues [119],
whereas vascular perfusion requires more experience, time and
equipment, and is more prone to alterations in structural
characteristics due to deviations in the specific settings [120,
121]. Detailed protocols for fixation have been given elsewhere
[122, 123].

As reduced elastic recoil in emphysematous lungs may result
in overexpansion of the lung [31] and as alveolar epithelial
surface area may be affected by the degree of inflation [117,
118], fixation by airway instillation at a given pressure might
affect measurements of total alveolar surface area in emphy-
sematous as compared with control lungs. As overexpansion
can be expected to result in a stretch-related decrease in the
thickness of the alveolar wall tissue, estimation of the mean
arithmetic thickness and of the total volume of alveolar wall
tissue will help to evaluate whether or not overexpansion has
to be taken into account [32]. Volume-controlled procedures of
lung fixation may help to resolve such problems [124–126] but,
to best of the present author’s knowledge, have not yet been
used in quantitative morphological studies of experimental
emphysema.

Tissue sampling
Lung function analysis reveals important additional para-
meters for the assessment of emphysema, e.g. forced expiratory
volume in one second (FEV1; FEV0.1 in rodents), lung
compliance and diffusing capacity of the lung for carbon
monoxide, which are impaired in emphysematous lungs [12,
127]. Such parameters result from integrative measurements
comprising the entirety of airspaces. In order to obtain
corresponding integrative measurements of lung structures,
it is of paramount importance that the tissue samples to be
analysed are representative of the whole organ. This is even
more important in experimental emphysema, as the character-
istic lesions are heterogeneously distributed [128]. Therefore,
the sampling design has to assure the following. 1) The
reference volume, i.e. the volume of the fixed lung, must be
determined (either by fluid displacement [129] or by the
Cavalieri method [130]). 2) Each and every part of the lung
must have the same chance of being analysed, which can be
achieved by a systematic uniformly random sample (SURS)
design. When applied at every single step of the analysis, SURS
will ensure that the parameters recorded are representative of
the lung as a whole, irrespective of the homogeneity or
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heterogeneity of the distribution of emphysematous lesions.
The distribution of lesions within in the lung must by no
means be ‘‘uniform’’ or ‘‘random’’; heterogeneity within the
lung will only affect the coefficients of variation of the
parameters analysed. A detailed protocol of SURS has been
described elsewhere [123].

Parameters suggested for the analysis of emphysema
As previously emphasised, quantitative demonstration of
emphysema has to comprise both airspace enlargement and
loss of the alveolar walls.

Airspace enlargement

The disadvantages of using MLI or MLC as an index for the
assessment of airspace enlargement have already been
discussed in the present article and have been reviewed in
detail elsewhere [15, 18]. Another method that has recently
been suggested as a more reliable alternative parameter to MLI
[131], provoked a vivid and fundamental debate in the Journal
of Applied Physiology about the problems related to the meas-
urement of three-dimensional parameters on two-dimensional
sections [132]. The most important point raised by stereologists
in the field relates to the fact that measurements of the size of
alveoli sampled with a single two-dimensional section will
always be biased towards larger alveoli, as the chance of being
hit by one cut is greater for larger than for smaller alveoli.
Therefore, two-dimensional measurements, e.g. of the mean
diameter of a population of alveolar profiles, the mean alveolar
profile area or radial alveolar counts, are highly biased
towards larger alveoli. As the size of an alveolus is a three-
dimensional characteristic, a proper approach to assess air-
space enlargement would be to estimate the average volume of
a representative sample of alveoli, i.e. the number-weighted
mean alveolar volume (-nN). This can be performed, for
example, by sampling alveoli (according to number) by means
of a selector (from exhaustive serial sections) and using the
point-sampled intercepts method (further discussed later) for
estimation of the mean alveolar volume, which is number-
weighted as alveoli were chosen according to number [133,
134]. Alternatively, if alveolar numbers are determined using a
physical disector approach (using two sections with known
distance), -nN can be indirectly determined from the total
alveolar volume in cubic micrometres (using standard point
counting and knowing the total lung volume) divided by the
total number of alveoli per lung, as described recently
[135, 136].

An interesting alternative to -nN is the volume-weighted mean
volume (-nV), which is estimated by means of the point-sampled
intercept method applied to single sections [137, 138]. This
approach is less time-consuming but more difficult to inter-
pret, as -nV is the sum of -nN and its variation. Hence, the ‘‘true’’
size of the average alveolus cannot be inferred from -nV.
However, an increased heterogeneity in alveolar size, as is
typical for emphysematous lungs, will result in an increase in
-nV, whereas no change in -nN may be seen, because emphyse-
matous lesions are often surrounded by many small alveoli
[131]. Hence, this sensitivity to variations in size suggests -nV to
be a helpful additional parameter with which to assess
airspace enlargement in emphysema.

Loss of alveoli and alveolar walls
Alveoli are composed of the alveolar airspace and the
surrounding alveolar walls. As each alveolus has an opening
towards the alveolar duct lumen and the alveolar wall
typically separates adjacent alveoli, thus contributing to more
than one alveolus, alveoli are not discrete objects. Never-
theless, as for each three-dimensional structure, several
fundamental global parameters can be recorded, i.e. total
volume and total surface area of the alveolar walls, and the
total number of alveoli (fig. 1). These parameters can be easily
obtained by classical point and intersection counting and
disector counts from thin sections of SUR samples, preferably
embedded into glycolmethacrylate or epoxide resin to reduce
shrinkage [139, 140]. Using a multilevel or cascade design at
different magnifications [15, 116, 141], the total volume of
alveolar wall tissue from mouse or rat lung is estimated at high
magnification levels (typically using a 40–606 lens) to
determine the fraction of parenchyma occupied by alveolar
wall tissue (volume density VV(awt,par)) by counting all test
points hitting alveolar wall tissue (P(awt)) and the points hitting
all parenchymal compartments (P(par)) and calculating:

VV awt,parð Þ~P awtð Þ=P parð Þ mm3:mm-3
� �

ð1Þ

At lower-level magnification (typically using a 106 lens), the
fraction of lung occupied by parenchyma (VV(par,lung)) is
estimated by counting all points hitting parenchymal struc-
tures (P(par)) relative to all points falling on lung structures
(P(lung)) and calculating:

VV(par,lung)5P(par)/P(lung) (mm3?mm-3) (2)

Knowing the reference volume, i.e. the volume of the fixed
lung (V(lung)) in mm3, from independent measurements (as
previously discussed), the total volume of alveolar wall tissue
(V(awt)) is calculated by the simple formula:

V(awt)~VV(awt,par)|VV(par,lung)|V(lung) (mm3) ð3Þ

Similarly, total alveolar surface area is obtained by estimating
the density of alveolar wall surface area per parenchymal
volume (SV(aw,par)) at high magnification using a test system
with line segments of a calibrated length per test point (LP),
and counting the sum of intersections of the line segments with
the alveolar walls (I(aw)) as well as the sum of (P(par)) to
calculate:

SV(aw,par)~(2|I(aw))=(P(par)|LP) (mm-1) ð4Þ

Total alveolar surface area (S(aw)) can then be obtained
according to the following formula:

S(aw)~SV(aw,par)|VV(par,lung)|V(lung) (mm2) ð5Þ

The arithmetic mean thickness of the alveolar wall tissue (t̄aw)
can be calculated from these point and intersection counts
according to the following formula:

taw~LP|P(awt)=(2|I(aw)) (mm) ð6Þ

The most challenging task is to estimate the number of alveoli
per lung. This can be performed by means of a selector
approach (using exhaustive serial sections) [133, 134] or, much
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more efficiently, by a physical disector approach (using two
sections with known distance), as described in detail recently
[135, 136]. The use of the physical disector in conjunction with
the fractionator (NYENGAARD and GUNDERSEN [78] in the
present issue of the ERR)), elegantly avoids any problem
related to shrinkage [136]. As previously mentioned, alveoli

are not discrete objects but are connected to each other via
alveolar openings into the alveolar ducts. Therefore, the
connectivity of the alveoli has to be determined (for details,
see [142]), which in practice means that the alveolar opening
rings are counted to obtain an estimate of alveolar number
[135, 136]. This, however, may be difficult in emphysematous
lungs because portions of the alveolar opening rings may be
destroyed along with the alveolar walls. To overcome this
problem and to reduce the amount of time for analysis, a new
parameter has been suggested (D.M. Hyde, California National
Primate Research Center, University of California, Davis, CA,
USA; personal communication): the mean alveolar face length,
which is the mean distance from one interalveolar wall
junction to the adjacent junction. The mean alveolar face
length appears to be highly correlated with alveolar number,
while also being independent of the degree of inflation. All
these parameters can be estimated, for example, using the
recently developed ALP-sector as a multipurpose coherent test
system, with test area (A), test lines (L) and test points (P),
which allows the assessement of volume, surface and length
densities per unit volume from point hits (P), intersection
counts (I), and transect counts (Q), whereby the reference area
is estimated by the number of test points included in the
section profile [15].

CONCLUSIONS
To date, a variety of animal models have been suggested as
models of pulmonary emphysema. Recognising that on the
basis of the widely accepted definition of pulmonary emphy-
sema as the ‘‘abnormal permanent enlargement of the air-
spaces distal to the terminal bronchioles, accompanied by
destruction of their walls’’ [10], quantitative morphology is the
only method by which to reliably assess the presence of
emphysema. Careful inspection of many of the proposed
animal models reveals that both criteria of emphysema
definition were demonstrated in surprisingly few of them.
Stereology offers the appropriate tools to quantify the relevant
parameters and continues to develop additional tools that will
help to assess the reliability of any new model proposed. If use
of inappropriate parameters continues for the evaluation of
existing animal models of emphysema, thinking and resources
are likely to be misdirected. Unless the poor methods widely
used in the quantification of experimental emphysema are
improved, the proposed models will limit understanding and
treatment of human emphysema.
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