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ABSTRACT Activity-related dyspnoea is often the most distressing symptom experienced by patients with
chronic obstructive pulmonary disease (COPD) and can persist despite comprehensive medical management.
It is now clear that dyspnoea during physical activity occurs across the spectrum of disease severity, even in
those with mild airway obstruction. Our understanding of the nature and source of dyspnoea is incomplete,
but current aetiological concepts emphasise the importance of increased central neural drive to breathe in the
setting of a reduced ability of the respiratory system to appropriately respond. Since dyspnoea is provoked or
aggravated by physical activity, its concurrent measurement during standardised laboratory exercise testing is
clearly important. Combining measurement of perceptual and physiological responses during exercise can
provide valuable insights into symptom severity and its pathophysiological underpinnings. This review
summarises the abnormal physiological responses to exercise in COPD, as these form the basis for modern
constructs of the neurobiology of exertional dyspnoea. The main objectives are: 1) to examine the role of
cardiopulmonary exercise testing (CPET) in uncovering the physiological mechanisms of exertional dyspnoea
in patients with mild-to-moderate COPD; 2) to examine the escalating negative sensory consequences of
progressive respiratory impairment with disease advancement; and 3) to build a physiological rationale for
individualised treatment optimisation based on CPET.

@ERSpublications
Measurement of symptom intensity, ventilatory control and mechanics during exercise exposes
mechanisms of dyspnoea http://ow.ly/6OXQ3020tEA

Introduction
Chronic obstructive pulmonary disease (COPD) is a common and often devastating respiratory illness that
afflicts ∼10% of individuals over 40 years of age [1, 2]. The most common symptom experienced by
patients with COPD is perceived respiratory discomfort (dyspnoea) during physical activity. According to
the 2012 American Thoracic Society statement, breathlessness (or dyspnoea) is “a subjective experience of
breathing discomfort that consists of qualitatively distinct sensations that vary in intensity” [3]. Effective
management of this troublesome symptom, and the associated poor health status, represents a major
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challenge for caregivers. Chronic breathlessness, reduced exercise capacity and habitual physical inactivity
are inexorably linked and are strong predictors of reduced survival in COPD [4–7]. It is no surprise,
therefore, that expert guidelines committees uniformly recommend improvement of dyspnoea and exercise
tolerance as a major goal of management [8–10].

Dyspnoea assessment is an integral component of the general clinical evaluation of the COPD patient and
is usually achieved by careful history. The patient is questioned about the onset, frequency and duration of
the symptom (including aggravating and relieving factors, frequency of rescue use of short-acting
bronchodilators, etc.) and its impact on daily activities. The clinician determines the magnitude of the
physical task required to provoke dyspnoea in the individual and is encouraged to record this using a
simple questionnaire such as the Medical Research Council (MRC) scale [8, 9]. However, it is generally
accepted that such clinical assessments can substantially underestimate the actual degree of activity-related
dyspnoea as patients gradually adapt to the presence of unpleasant symptoms by increasingly avoiding
activities that provoke them in the first place. Thus, an all too common observation is that many patients
with COPD, who claim not to be particularly troubled by activity-related dyspnoea, experience significant
respiratory discomfort at low-work intensities during formal cardiopulmonary exercise testing (CPET)
compared with healthy age-matched peers [11]. Moreover, traditional resting pulmonary function tests
correlate poorly with severity of activity-related dyspnoea [12, 13]. The current review, therefore, examines
the clinical rationale for dyspnoea assessment during CPET in the context of our current understanding of
the pathophysiology of this symptom in COPD [3, 14–16]. To better understand the mechanisms of
dyspnoea, we will first review the abnormal physiological responses to exercise in patients with COPD.

Physiological responses to exercise
Increased efferent respiratory drive
The well-established physiological abnormalities that are amplified during the stress of exercise in patients
with moderate COPD, when compared with healthy controls, are highlighted in figure 1 [17]. These include
high central inspiratory neural drive from cortical and bulbo-pontine centres in the brain, as indirectly
indicated by relatively increased fractional inspiratory neural drive to the diaphragm. Increased efferent
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FIGURE 1 a–f ) Diaphragm electromyography (EMGdi) and selected ventilatory and indirect gas exchange responses to incremental cycle exercise
test in patients with moderate chronic obstructive pulmonary disease (COPD) and age-matched healthy controls. Data are presented as mean±SEM.
Square symbols represent tidal volume-ventilation inflection points. EMGdi/EMGdi,max: an index of inspiratory neural drive to the crural
diaphragm; V′E: minute ventilation; V′E/V′CO2: ventilatory equivalent for carbon dioxide; PETCO2: partial pressure of end-tidal carbon dioxide;
SpO2: arterial oxygen saturation measured by pulse oximetry. *: p<0.05 for COPD versus healthy controls at rest, at standardised work rates or at
peak exercise. Reproduced and modified from [17] with permission.
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drive in COPD is ultimately the consequence of increased chemostimulation and excessive mechanical
loading, as well as functional weakness of the muscles of breathing, in highly variable combinations.

Increased reflex chemostimulation
Increased stimulation of central and peripheral chemoreceptors in COPD occurs as a result of: 1) alveolar
ventilation/perfusion (V′A/Q′) abnormalities (decreased ventilatory efficiency, high V′A/Q′ lung units and
increased physiological dead space) [18–20]; 2) critical arterial oxygen (O2) desaturation (low V′A/Q′ lung
units and reduced systemic mixed venous O2 in the blood) [21, 22]; and 3) increased acid–base disturbances
(e.g. early metabolic acidosis) due to deconditioning [23, 24]. The negative haemodynamic consequences of
hyperinflation may increase pulmonary vascular resistance and decrease left ventricular filling pressures [25].
The consequent impairment in cardiac output may reduce O2 delivery to the contracting peripheral muscles
contributing to further increase afferent ventilatory stimuli (acidosis and ergo-receptor stimulation) [26–29].

Thus, increased reflex ventilatory stimulation may also arise from increased activation of ergo- and
metabo-receptors in the active peripheral muscles [30], where the metabolic milieu is often acidic. Finally,
increased intrinsic mechanical loading of the functionally weakened respiratory muscles also means that
increased efferent motor drive is required to achieve a given force generation by these muscles [31, 32].

Abnormal dynamic mechanics
Increased respiratory motor drive and contractile respiratory muscle effort occur as a result of increased
elastic loading (including increased inspiratory threshold loading due to the effect of intrinsic positive
end-expiratory pressure (PEEP)), decreased dynamic lung compliance and increased resistive loading of the
respiratory muscles (figure 2) [17, 33–36]. Critical dynamic mechanical constraints are indicated by dynamic
lung hyperinflation during exercise (i.e. the transient increase of end-expiratory lung volume (EELV) above
the resting value) and by premature encroachment of end-inspiratory lung volume (EILV) on total lung
capacity (TLC) (i.e. the attainment of a critically reduced inspiratory reserve volume (IRV)) [37, 38]. Thus,
tidal volume (VT) becomes positioned close to TLC and the upper reaches of the S-shaped pressure–volume
relationship of the relaxed respiratory system, where compliance is decreased and the inspiratory muscles are
functionally weakened. This explains the blunted VT response and relative tachypnoea in COPD compared
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FIGURE 2 a–f ) Respiratory mechanical measurements during incremental cycle exercise in patients with moderate chronic obstructive pulmonary
disease (COPD) and age-matched healthy controls. Data are presented as mean±SEM. Square symbols represent tidal volume-ventilation inflection
points. Pes: oesophageal pressure; Pes,max: maximal Pes; CLdyn: dynamic lung compliance; PEEPi: intrinsic positive end-expiratory pressure.
*: p<0.05 COPD versus healthy controls at rest, at standardised work rates or at peak exercise. Reproduced and modified from [17] with permission.
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with healthy controls. Increased breathing frequency and the attendant increased velocity of shortening of
inspiratory muscles causes further functional weakness of the inspiratory muscles [39].

A simple noninvasive assessment of dynamic respiratory mechanics can be made by plotting operating
lung volumes, derived from serial inspiratory capacity (IC) manoeuvres throughout exercise, and
concomitant breathing pattern (figure 3) [17, 37, 38]. EELV can be calculated by subtracting IC from the
pre-determined TLC; thus, change in IC reflects change in EELV on the assumption that TLC remains
stable during rest and exercise [38]. The dynamic IRV is calculated as IC minus VT and plotted at
standardised work rates during the exercise test. The VT plateau generally occurs when the VT/IC ratio is
∼0.7 (or when IRV is 0.5–1.0 L) regardless of disease severity [37].

Tidal flow–volume loop analysis with reference to the maximal flow–volume “capacity” envelope also
provides important information about the mechanical reserves of the respiratory system [40, 41]. Flow–
volume loop analysis provides a crude qualitative assessment of expiratory flow limitation, but nevertheless
clearly exposes the prevailing dynamic mechanical constraints on volume expansion during progressive
exercise (outlined earlier in this review) [40, 41].

Although exercise limitation is undoubtedly multifactorial, multiple studies uniformly highlight that
ventilatory factors are often the proximate limitation to exercise performance across the continuum of
COPD [20, 33, 37, 42–45]. Furthermore, it is reasonable to surmise that attendant perceived respiratory
discomfort is integral to the concept of ventilatory limitation in COPD [17, 45]. Moreover, it has now
become clear that reliance on traditional estimates of breathing reserve (estimated maximal ventilatory
capacity (MVC) minus peak minute ventilation (V′E)) can underestimate true ventilatory limitation
indicated by premature attainment of critical respiratory mechanical constraints and accompanying
intolerable dyspnoea at relatively low work rates [45, 46].

Mechanisms of dyspnoea
Sensory intensity of dyspnoea
Broadly speaking, dyspnoea during exercise reflects an imbalance between the increased demand to breathe
and the ability to meet that demand [47]. Thus, the intensity of dyspnoea during exercise in COPD
correlates closely with the following physiological ratios: ventilation as a fraction of MVC (V′E/MVC);
respiratory effort relative to maximal effort as measured by oesophageal pressures (Pes/Pes,max); VT/IC or
EILV/TLC; and inspiratory neural drive to the diaphragm relative to the maximum as measured by
electromyography (EMGdi/EMGdi,max) (figure 4) [17, 33, 48–51]. Taken together, these studies suggest
that the onset of perceived intensity of respiratory discomfort corresponds with a point during exercise
where there is critical encroachment on reserves of ventilatory output, muscle force generation,
VT expansion and inspiratory neural drive to the diaphragm [17, 33, 48–51]. Although expiratory muscles
are usually recruited during exercise in most patients with COPD, they do not mitigate the rise in EELV,
the relatively early respiratory mechanical constraints or the attendant perceived inspiratory difficulty [52].
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FIGURE 3 a) Operating lung volumes and b) breathing frequency (Fb) during incremental cycle exercise in
patients with moderate chronic obstructive pulmonary disease (COPD) and age-matched healthy controls. Data
are presented as mean±SEM. Square symbols represent tidal volume-ventilation inflection points. TLC: total
lung capacity; EILV: end-inspiratory lung volume; EELV: end-expiratory lung volume. *: p<0.05 COPD versus
healthy controls at rest, at standardised work rates or at peak exercise. Reproduced and modified from [17]
with permission.
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There is corroborative evidence that intensity of breathlessness rises with increasing tidal inspiratory
efferent neural activity from bulbo-pontine and cortical motor centres in the brain relative to the maximum
possible neural activation (indirectly represented by physiological ratios outlined above) [17, 33, 48]. It is
further postulated that attendant increased central corollary discharge to the somato-sensory cortex, where
unpleasant respiratory sensations are consciously perceived, is a final common sensory pathway [53, 54].

Quality of dyspnoea
It is postulated that the main qualitative dimension of breathlessness in COPD (i.e. “unsatisfied
inspiration”) has its neurophysiological basis in the widening dissociation between increasing efferent
central neural drive and the blunted respiratory muscular/mechanical response of the compromised
respiratory system (i.e. neuromechanical dissociation), due partly to the combined effects of resting and
dynamic lung hyperinflation (figure 4) [17, 55–57]. We have demonstrated that the descriptor “unsatisfied
inspiration” becomes more frequently selected than the descriptor of increased “work/effort” after the
VT plateau [17, 57], where neuromechanical dissociation increases more abruptly. In line with this theory, it
has been repeatedly shown that external imposition of mechanical loads to impede respiration in healthy
volunteers in the face of constant or increasing chemostimulation reliably provokes respiratory sensations
such as “air hunger” akin to “unsatisfied inspiration” [58–61]. Although definitive experimental verification
is lacking, it is also entirely plausible that afferent inputs from the lungs to the somato-sensory cortex
(via the vagus nerve) or from a multitude of mechanoreceptors in the respiratory muscle and chest wall
(via spinal pathways) can directly induce unpleasant respiratory sensations that shape the clinical
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FIGURE 4 Exertional dyspnoea intensity is shown relative to a) work rate and b) diaphragm electromyography
relative to maximum (EMGdi/EMGdi,max) during incremental cycle exercise in patients with moderate chronic
obstructive pulmonary disease (COPD) and age-matched healthy controls. c) Selected qualitative dyspnoea
descriptors at the end of incremental cycle exercise in patients with moderate COPD and age-matched
healthy controls. d) The relationship between tidal volume (VT) as a function of predicted vital capacity
(VCpred) and EMGdi/EMGdi,max. Square symbols represent the tidal volume-ventilation inflection points in
panels a) and d) and the point at the highest equivalent ventilation (50 L·min−1) in panel b). Data are presented
as mean±SEM. *: p<0.05 COPD versus healthy controls at rest, at standardised work rates or at peak exercise.
Reproduced and modified from [17] with permission.

DOI: 10.1183/16000617.0054-2016 337

EXERTIONAL DYSPNOEA | D.E. O’DONNELL ET AL.



expression of dyspnoea [62]. There is new information that endogenous opiate production can further
modulate multidimensional dyspnoea in patients with COPD [63].

The affective dimension
Respiratory discomfort beyond a certain threshold evokes an emotive or affective response such as anxiety,
fear, panic or distress. The threshold for affective distress probably varies between individuals and is
ultimately thought to be linked to increased activation of limbic and paralimbic “flight or fight” centres in
the brain and associated over-activation of the sympathetic nervous system [64–70].

Measuring dyspnoea during CPET
Prior to CPET, and in addition to a careful history (as outlined earlier in this review), it is important to
ascertain the impact of dyspnoea on the patient’s daily living using simple magnitude of task (e.g. MRC
dyspnoea scale) or multidimensional questionnaire (Baseline Dyspnoea Index) [71]. An assessment of the
patient’s habitual physical activity level is helpful to ascertain if skeletal muscle deconditioning is
potentially contributing to low cardio-respiratory fitness and associated higher ventilatory demand [72].
Full pulmonary function tests (spirometry, lung volume components including IC, diffusing capacity of the
lung and resting arterial O2 saturation) are also a prerequisite. Documentation of comorbidities potentially
associated with exertional dyspnoea (obesity [73–76], cardio-circulatory disorders [77–79], anaemia, etc.) is
also essential for proper CPET interpretation.

Intensity of dyspnoea during exercise can be measured using one of two validated scales: the modified
10-point Borg scale [80] or a visual analogue scale [81]. In practice, the 10-point Borg scale, a category scale
with ratio properties, is more commonly used and easy to administer in clinical and research settings. It has
been shown to be reliable, being both reproducible and responsive in COPD populations [82]. Care must be
taken to precisely clarify the respiratory sensation that the patient is being asked to quantify (e.g. breathing
discomfort, breathing effort or unpleasantness of breathing). The sensation in question should be anchored
to the numeric extremes of the scale: 0=no breathing discomfort and 10=the strongest intensity of breathing
discomfort that the patient has experienced or can imagine [80]. Before CPET, the patient should be
thoroughly familiarised with the range of numerals and the associated word descriptors. The patient is then
asked to rate the strength of intensity of breathing discomfort every 2 min throughout exercise by pointing
to the appropriate numeral. Borg dyspnoea ratings are then plotted as a function of increasing oxygen
uptake (V′O2), work rate or V′E and compared with reference values from a healthy age- and sex-matched
population, preferably developed in the same exercise laboratory [83].

Measuring the affective component of dyspnoea during CPET remains challenging and there is currently
no consensus as to the best approach. Preliminary studies have measured dyspnoea-related anxiety using
the 10-point Borg scale during CPET and show that this is responsive to interventions such as pulmonary
rehabilitation [84, 85]. In these studies patients with COPD could differentiate (and separately rank)
sensory intensity and affective domains of dyspnoea.

There is debate about the best exercise modality (treadmill or cycle exercise) for the purpose of clinical
assessment of exertional dyspnoea [86–89]. Within individuals with COPD, dyspnoea/work rate plots and
dyspnoea/V′E are similar during treadmill and cycle exercise when the increase in incremental work rate is
matched [73, 90]. Moreover, the relative increase in perceived leg effort ratings at higher exercise intensities
during cycle exercise, compared with treadmill walking, does not influence Borg/V′E or Borg/work rate
slopes of dyspnoea intensity [73, 90]. Interestingly, the earlier metabolic acidosis and corresponding rise in
V′E during cycle exercise is associated with an earlier rise in dyspnoea than during treadmill walking, when
work rate increases are matched across modalities [73, 86, 88]. When abnormalities of pulmonary gas
exchange are suspected as a source of increased ventilatory stimulation and exertional dyspnoea, treadmill
testing is likely to be more sensitive than cycling since arterial blood gas perturbations are exaggerated for a
given V′O2 with weight-bearing walking compared with cycling [73, 86, 88].

CPET interpretation: panel displays
Since evaluation of exertional dyspnoea is the focus of the current review, we propose an ordered
presentation of perceptual and physiological responses as presented, in part, in figure 5 [45]. 1) perceptual
responses: dyspnoea (Borg) ratings as a function of work rate (and/or V′E); 2) ventilatory control: V′E/work
rate, V′O2/work rate, ventilatory equivalent for carbon dioxide (V′E/V′CO2)/work rate, O2 saturation/work
rate, end-tidal CO2/work rate and ventilatory thresholds (e.g. carbon dioxide output (V′CO2)/V′O2 inflection
method, a measure of acid–base disturbance); 3) dynamic respiratory mechanics: change in IC, IRV, VT and
breathing frequency, all as a function of increasing work rate (or V′E); and 4) cardio-circulatory responses:
heart rate relative to predicted peak heart rate and O2 pulse [17, 20, 33, 37, 44, 45].
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This simple format allows the clinician to evaluate the magnitude of perceived intensity of dyspnoea and
exercise intolerance (peak work rate or V′O2 achieved) in the individual and then to identify potential
contributory factors. These include: increased ventilatory demand or drive and its underlying cause(s)
(increased ventilatory inefficiency, critical hypoxaemia or early ventilatory threshold), or reduced
mechanical/metabolic efficiency, as occurs in obesity (parallel upward shift of V′O2/work rate relationship);
and severe mechanical constraints (increase in EELV, rapid reduction of IRV to its minimal value, early
VT plateau/ventilation and corresponding onset of tachypnoea) [17, 20, 33, 37, 44, 45]. Cardio-circulatory
responses are often nonspecific, but may demonstrate relative tachycardia, reduced O2 pulse, reduced V′O2/
work rate relationship and early ventilatory threshold that suggest the presence of either skeletal muscle
deconditioning or reduced cardiac output [91, 92]. 12-lead electrocardiography, normally incorporated
into CPET, can uncover hitherto undiagnosed ischaemic heart disease.

The V′E–V′CO2 relationship is invariably helpful for the clinical interpretation of CPET in patients with
COPD. This relationship has been analysed either in the ventilatory equivalent for CO2 (V′E/V′CO2 ratio)
versus work rate plot (figure 5) or in the V′E versus V′CO2 plot. During mild-to-moderate exercise, V′E/V′CO2

decreases in tandem with the physiological dead space/VT ratio [93]. The lowest (nadir) V′E/V′CO2 is reached
just before V′E starts to compensate for lactic acidosis thereby providing an indicator of the “wasted”
ventilation (ventilatory inefficiency) [94]. It should be noted, however, that the V′E/V′CO2 response contour
depends on how V′E changes in relation to V′CO2 taking into consideration its starting point. The former is
reflected by the slope of the V′E versus V′CO2 regression line and the latter by its intercept, i.e. V′E when
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V′CO2=0. In other words, the V′E/V′CO2 nadir equals the slope plus intercept [95]. As discussed in the
following section of this review, COPD severity strongly influences the different metrics of ventilatory
inefficiency (nadir, slope and intercept) [19, 96, 97].

This approach not only allows an objective assessment of severity of activity-related dyspnoea in the patient
but will also often reveal abnormal physiological responses, which cannot easily be predicted from a thorough
history and/or the results of resting pulmonary function tests [12]. These include: the presence of critical
dynamic mechanical constraints of the respiratory system, high ventilatory demand at low exercise intensities
indicating a preponderance of lung units with high V′A/Q′ ratios or alveolar hyperventilation, significant
arterial O2 desaturation, or a pattern of responses that suggest decreased cardio-respiratory fitness [17, 20, 33,
37, 44, 45]. All of these factors, singly or in combination, can help explain the underlying dyspnoea and their
discovery during CPET helps facilitate a more personalised management strategy for the patient with COPD.

Increasing exertional dyspnoea with disease progression
CPET in mild COPD
CPET is particularly useful for evaluation of mechanisms of exertional dyspnoea in individuals in whom this
symptom seems disproportionate to the degree of respiratory impairment as assessed by simple pulmonary
function tests (figure 5) [45]. In this context, recent epidemiological studies have confirmed that activity-related
dyspnoea and activity restriction are present in many smokers with normal spirometry [98–100]. A series of
studies have recently exposed heterogeneous dynamic physiological abnormalities during exercise in such
symptomatic smokers without spirometrically defined COPD [48, 98]. The dominant abnormalities in patients
with spirometrically determined mild COPD include: 1) increased inspiratory neural drive to breathe,
secondary to measured high physiological dead space as indirectly assessed by V′E/V′CO2 (nadir and slope);
and 2) increased pulmonary gas trapping due to the combined effects of peripheral airway disease (expiratory
flow limitation) and increased ventilatory demand, which together force earlier critical mechanical constraints
and higher exertional dyspnoea ratings than in healthy controls [20, 33, 44, 45, 101]. Thus, relatively preserved
mechanical reserves during the early phases of exercise allows increased physiological dead space to be readily
translated into a higher V′E–V′CO2 relationship in patients with mild COPD, i.e. higher V′E/V′CO2 nadir and
steeper V′E–V′CO2 slope compared with healthy controls (figure 6) [19].

CPET in moderate-to-severe COPD
In more advanced COPD, the same physiological derangements apply as in mild COPD but occur at
significantly lower V′E and work rate. Inspiratory neural drive is substantially greater at lower exercise
intensities than in patients with milder COPD reflecting worsening pulmonary gas exchange and
mechanical constraints, in various combinations (figure 1) [17, 19, 37]. Increased drive in more advanced
COPD is compounded in many patients by negative effects of low ventilatory thresholds (and metabolic
acidosis) secondary to deconditioning and, in some cases, critical arterial O2 desaturation (arterial O2

tension <60 mmHg or <8 kPa). It is noteworthy that, in contrast to mild COPD, V′E/V′CO2 (nadir and
slope) is a less reliable reflection of V′A/Q′ abnormalities in advanced COPD where mechanical
constraints blunt the V′E response and underestimate the magnitude of the prevailing inspiratory neural
drive [19]. Progressive reduction of resting IC (as resting lung hyperinflation increases) with disease
progression helps explain the ever-diminishing operating limits for VT expansion and progressively earlier
attainment of a minimal IRV during exercise (figure 7) [37]. The point at which VT expands to reach a
critical minimal IRV, the point where neuromechanical dissociation begins, is an important mechanical
event during exercise and marks the threshold beyond which dyspnoea intensity rises sharply to reach
intolerable levels (figure 8) [37, 55]. The lower the resting IC, the earlier in exercise this threshold is
reached. Similarly, the progressively higher dyspnoea/V′E slopes as the disease advances are in large part
explained by the worsening dynamic respiratory mechanics and muscle function described above.

It is noteworthy that, in contrast to mild COPD, mechanical constraints blunt the dynamic changes in V′E
increases in more advanced COPD. Thus, despite the progression of “wasted” ventilation, the slope
decreases as the disease evolves [19, 96, 97]. Concomitant increases in intercept, however, frequently
uncover the presence of ventilatory abnormalities leading to a high nadir (slope+intercept) in most
moderate-to-severe COPD patients (figure 6) [19]. Some patients with end-stage, very severe COPD in
whom the nadir is pronouncedly reduced and the CO2 set-point increased may present with normal-to-low
nadirs [102]. As a corollary, V′E/V′CO2 (nadir and slope) is a less reliable reflection of V′A/Q′ abnormalities
in advanced COPD where it underestimates the prevailing inspiratory neural drive [19].

Evaluation of therapeutic interventions using CPET
Based on our current understanding of the pathogenesis of activity-related dyspnoea, we can attempt
to strategically intervene to treat this distressing symptom on an individual patient basis. The main goals
are to: 1) improve respiratory mechanics and muscle function; 2) reduce the increased central neural drive;
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and 3) address the affective component of dyspnoea. Combined interventions which impact all three of
these goals are likely to have the greatest effect on dyspnoea alleviation during exercise [103]. For the
purpose of evaluating the efficacy of various interventions in relieving activity-related dyspnoea in clinical
or research settings, a constant work rate exercise protocol set at a fixed fraction of a pre-established peak
work rate (e.g. 60–80%) is preferable [104]. This is justified on the grounds that any beneficial changes in
lung mechanics and dyspnoea are more readily translated into increases in time to exercise intolerance
(endurance) than changes in maximal exercise capacity [105]. Moreover, the ability to complete a given
task is arguably more relevant to daily life than reaching greater levels of exertion, i.e. the constant work
rate holds greater external validity compared with incremental CPET [104].

Improving mechanics
Bronchodilators of all classes and duration of action have consistently been shown to decrease lung
hyperinflation, with reciprocal increases in resting IC in patients with COPD [103, 106–120]. By increasing
resting IC, bronchodilators also increase the available IRV and thereby delay the onset of critical
respiratory-mechanical constraints on VT expansion during exercise [55, 103, 106, 120]. Thus, throughout
exercise, less central neural drive and respiratory muscle effort is required to achieve greater VT expansion:
neuromechanical dissociation is partially reversed, onset of intolerable dyspnoea is delayed and exercise
tolerance is improved [55, 120]. Both classes of inhaled bronchodilators (β2-agonists and muscarinic
antagonists) have been shown to increase the resting IC in patients with COPD by ∼0.2–0.4 L or ∼10–15%
[103, 106, 112–114, 116]. Increases in cycle exercise endurance time in response to bronchodilator therapy
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are of the order of 20%, on average [103, 106, 114, 115, 121]. Such increases in cycling endurance time are
typically within the range that is thought to be clinically important, i.e. about 100 s.

Reducing central respiratory drive
Our ability to reduce the increased central neural drive during exercise is limited since the proximate source is
often increased chemostimulation as a result of V′A/Q′ abnormalities (compromised CO2 elimination), which
are often irreversible. In some individuals with more moderate COPD who are sufficiently motivated,
multi-modality exercise training can result in a delay in the rise of metabolic CO2 output (by improving aerobic
capacity) and consequently, a delay in the rise of central neural drive, the rate of dynamic hyperinflation and the
onset of intolerable dyspnoea [85, 122–125]. In selected individuals, supplemental O2 [103, 126–129] or opioid
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medication [63, 130–135], which directly or indirectly reduces central respiratory drive, can ameliorate dyspnoea
during physical activity and improve exercise endurance. Reduced neural drive following these interventions
usually manifests as reduced breathing frequency (and increased expiratory time) often with an attendant
decrease in the rate of dynamic hyperinflation [108, 113, 126, 128, 131]. Supplemental O2 can also improve O2

delivery and utilisation at the peripheral muscle level thereby delaying onset of metabolic acidosis and the
attendant rise in ventilatory stimulation [126, 136–140]. The most recent meta-analysis on the efficacy of
low-dose opiates found that dyspnoea was reduced (eight studies with 118 participants): standardised mean
difference in favour of intervention of −0.34 (95% CI −0.58−−0.10) [132]. However, it failed to demonstrate a
significant effect on exercise capacity (standardised mean difference of 0.06 (95% CI −0.15–0.28)) [132].

In patients in whom anxiety is a major feature, a trial of anxiolytic medication and psychological
counselling, usually within the framework of pulmonary rehabilitation [84, 85], can help address this
important affective aspect of exertional dyspnoea [141, 142].

Conclusion
Activity-related dyspnoea affects a great many patients with COPD worldwide. Our understanding of the
underlying mechanisms continues to grow and a central factor in causation seems to be increased efferent
neural drive to the inspiratory muscles, originating in bulbo-pontine and cortical motor centres of the
brain. Inspiratory drive is amplified in patients with COPD, compared with healthy individuals, because of
relatively increased chemostimulation and abnormal dynamic respiratory mechanics and muscle function
that collectively reflect the pathophysiology of the underlying disease. Progressive worsening of
activity-related dyspnoea and exercise tolerance as COPD severity increases is fundamentally explained by
progressively increasing central respiratory drive and neuromechanical dissociation of the respiratory
system. CPET offers the clinician a unique opportunity to evaluate the severity of dyspnoea and its
underlying mechanisms on an individual patient basis, and is particularly useful when symptom intensity
seems disproportionate to the results of resting pulmonary function tests. In fact, recent studies provide
compelling evidence that persistent respiratory symptoms and exercise intolerance are poorly correlated
with spirometry and underline the importance of additional clinical evaluation of respiratory impairment.
In this context, CPET can provide a comprehensive physiological assessment of the dyspnoeic COPD
patient and is likely to have expanded clinical utility in the future. A simple ordered approach which
examines symptom intensity, “noninvasive” ventilatory control parameters and dynamic respiratory
mechanics during a standardised incremental exercise test to tolerance can identify mechanisms
underlying perceived respiratory discomfort that are amenable to targeted treatment.
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