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ABSTRACT Exertional dyspnoea is among the dominant symptoms in patients with chronic heart
failure and progresses relentlessly as the disease advances, leading to reduced ability to function and
engage in activities of daily living. Effective management of this disabling symptom awaits a better
understanding of its underlying physiology.

Cardiovascular factors are believed to play a major role in dyspnoea in heart failure patients. However,
despite pharmacological interventions, such as vasodilators or inotropes that improve central haemodynamics,
patients with heart failure still complain of exertional dyspnoea. Clearly, dyspnoea is not determined by
cardiac factors alone, but likely depends on complex, integrated cardio-pulmonary interactions.

A growing body of evidence suggests that excessively increased ventilatory demand and abnormal
“restrictive” constraints on tidal volume expansion with development of critical mechanical limitation of
ventilation, contribute to exertional dyspnoea in heart failure. This article will offer new insights into the
pathophysiological mechanisms of exertional dyspnoea in patients with chronic heart failure by exploring
the potential role of the various constituents of the physiological response to exercise and particularly the
role of abnormal ventilatory and respiratory mechanics responses to exercise in the perception of dyspnoea
in patients with heart failure.
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Introduction
Chronic heart failure is a common and disabling syndrome, currently affecting approximately 26 million
people worldwide [1, 2]. Despite optimal modern pharmacological treatment, many heart failure patients
experience severe and persistent symptoms and their prognosis remains poor [1, 2]. Exertional dyspnoea is
among the dominant symptoms of patients with heart failure and progresses relentlessly as the disease
advances, leading to reduced ability to function and engage in activities of daily living [3, 4]. Effective
management of this disabling symptom awaits a better understanding of its underlying physiology.

The classic notion that exercise intolerance in heart failure is caused by the inability of the cardiac pump
to support the increased metabolic demand of the exercising muscles (causing leg fatigue) and its inability
to do so without abnormal increases in pulmonary venous pressures (causing dyspnoea) has been widely
challenged by an increasing body of literature. It is now clear that symptom limitation is not determined
by central haemodynamic factors alone, but likely depends on complex, integrated cardio-ventilatory,
neurohumoral and peripheral factors.

A growing body of evidence suggests that excessively increased ventilatory demand and abnormal
“restrictive” constraints on tidal volume (VT) expansion with development of critical mechanical limitation
of ventilation, contribute to exertional dyspnoea in heart failure [5, 6]. This contention has been bolstered
by studies that have shown that pharmacological and non-pharmacological interventions capable of
reducing the ventilatory response to exercise and/or improving the respiratory mechanics resulted in
salutary sensory consequences for patients with heart failure [5–7].

This article will attempt to shed light on potential mechanisms underlying exertional dyspnoea in patients
with heart failure by examining the potential role of the various constituents of the physiological response
to exercise and particularly the role of abnormal ventilatory and respiratory mechanics responses to
exercise in the perception of dyspnoea in patients with heart failure.

The perception of exertional dyspnoea and leg fatigue in heart failure
Patients with heart failure stop exercise because of either intolerable exertional dyspnoea, leg fatigue/
discomfort or both, at a point where there is apparent cardiopulmonary reserve [3, 8]. Although studies
conducted on large populations of patients with cardiorespiratory disorders have showed that leg
discomfort is the most frequent exercise-limiting symptom in heart failure [9, 10], severe dyspnoea is also
frequently reported [5, 6, 9–11]. The precise mechanisms underlying the choice, by a given patient with
heart failure, to describe either dyspnoea or fatigue as their main limiting symptom remain unclear, but
accumulating research tend to show that these two symptoms may, in fact, be inter-related [3].

In the general setting of peripheral muscle failure (either intrinsic or secondary to insufficient oxygen delivery),
a greater central motor command output is required for a given contractile force generation [12, 13]. The
accompanying increased central corollary discharge to the sensory cortex gives rise to a sense of increased
contractile effort that can become intolerable if it exceeds a certain sensory threshold that will vary among
individuals [12–15]. In addition, local alterations in the metabolic milieu due to excessive metabolite
accumulation in the working muscles (as a result of metabolic derangements, reduced blood perfusion or both)
may alter afferent inputs from multiple muscle mechanosensors (including pain sensors), which can project
directly to the sensory cortex where they are perceived as an unpleasant sensation of leg discomfort [3, 15].

CLARK et al. [8] analysed data from 222 incremental symptom-limited exercise tests to determine whether
there were differences between heart failure patients who stopped exercising because of dyspnoea or leg
fatigue. They found that 160 patients stopped exercising because of dyspnoea whereas 62 were limited by leg
fatigue and that there were no differences in underlying diagnosis, left ventricular haemodynamic
performance, aerobic capacity (peak oxygen uptake (peak V′O2)) and ventilatory efficiency (evaluated using
the slope of the relationship between minute ventilation (V′E) and carbon dioxide production (V′CO2): V′E/V
′CO2). Similarly, another study evaluated 71 patients with heart failure during an incremental exercise test.
While 41 patients stopped exercising because of dyspnoea and the remainder because of leg fatigue, no
differences were observed in ventilatory and metabolic responses in both groups [11]. Of note, significant
dyspnoea was also reported by the fatigue-limited group (mean Borg rating of 6.8). Although dynamic
respiratory mechanics, operating lung volumes and the haemodynamic response to exercise were not directly
assessed, these data suggest that, indeed, the factors influencing the respective determinants of the subjective
reason for exercise termination in patients with heart failure cannot be easily inferred from accessible cardiac
and ventilatory characteristics and, importantly, raise the question of whether these descriptors could be
conceptualised as being two subjective manifestations of the same physiological phenomenon.

It should also be kept in mind, however, that the fact that some heart failure patients interpret their
symptoms as dyspnoea while others as leg fatigue/discomfort may variably depend on the presence or
absence of concomitant lung disease as well as on the type of exercise testing used. Exercise tests with a
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more rapid increment in workload are likely to be terminated by dyspnoea, whereas slower tests, although
eliciting the same exercise performance, are more likely to be terminated by leg fatigue/discomfort [16].
Exercise modality must also be considered: when compared with treadmill exercise, cycling is more likely
to be stopped by leg fatigue/discomfort than by dyspnoea, even when the same level of exercise is
performed [17]. However, it has been suggested that in heart failure patients, when a ramp exercise
protocol is used, the presence on the V′E/V′CO2 relationship of an elevated V′E intercept strongly suggest
the coexistence lung disease [18, 19].

It is evident that the explanation for the pathophysiological processes underlying the perception of
symptoms in heart failure patients is neither simple nor intuitive. The following sections will examine in
greater details the potential contributions of various physiological systems to the generation of dyspnoea in
patients with heart failure. In particular, the role of left and right ventricular function and haemodynamic
performance, pulmonary function, gas-exchange anomalies, respiratory and peripheral muscular integrity
and function, chemoreceptors and sympathetic nervous system will be reviewed.

Is dyspnoea related to left and right ventricular haemodynamic performance?
Numerous studies have demonstrated that, in patients with heart failure of various aetiologies, baseline left
ventricular function is poorly correlated to peak exercise capacity [20–26]. In particular, left ventricular ejection
fraction (LVEF) [20, 21, 23–26], E and A wave velocities [24] and right ventricular ejection fraction [21] have
been shown to be poorly related to exercise capacity, although other markers of diastolic function may perform
slightly better [22]. In addition, resting baseline left ventricular function is poorly associated with baseline
dyspnoea and functional class [20, 24]. Although these studies have not directly quantified the relationship
between exertional dyspnoea and markers of ventricular function, it seems unlikely that these indices would
provide a satisfactory estimation of the dyspnoea burden of heart failure patients given that exertional
dyspnoea, even in this population, increases relatively linearly with exercise capacity [3].

Less data are available on the use of dynamic haemodynamic measurements during exercise. A study
describing direct haemodynamic measurements in 64 patients with heart failure during incremental exercise
testing showed no relationship between dynamic measurements of cardiac index or pulmonary artery wedge
pressure and peak V′O2. In addition, patients with mild, moderate or severe haemodynamic dysfunction
during exercise reached similar values of peak V′O2, suggesting that factors other than left ventricular
function were limiting exercise in these patients [27]. Specific markers, such as a higher rest–stress change in
mitral annulus systolic velocity (measured during dobutamine stress echocardiography) has been associated
with better aerobic performance, despite no difference in resting LVEF between patients with a high or low
rest–stress change during exertion [28].

Other studies reporting on pulmonary artery pressure monitoring during both maximal exercise and
activities of daily living in patients with heart failure showed an inconsistent relationship between this
variable and both dyspnoea and exercise capacity, again suggesting that central haemodynamic status alone
is insufficient to explain exertional symptoms [29, 30].

Finally, therapeutic interventions for heart failure such as inotropic drugs [31, 32], nitrates [33] and
phosphodiesterase-5 inhibitors [34], although they improve haemodynamic variables, do not provide a
significant improvement on exercise capacity. In addition, heart failure treatment with angiotensin converting
enzyme inhibitors and anti-aldosteronic drugs, noted to improve functional capacity, has been associated with
lung diffusion improvement without pulmonary haemodynamic changes [35, 36]. Finally treatment with
β-blocker agents has been shown to have little to no effect on maximal exercise capacity, but has been
associated with an improvement in perceived dyspnoea and ventilatory response to exercise [37] particularly
for non-selective β-blockers [38].

Is dyspnoea related to pulmonary anomalies?
Lung function and ventilation
The relevance of ventilatory response to exercise in heart failure lies in the fact that, as in other
cardiopulmonary disorders, dyspnoea intensity rises during exercise as V′E increases [3]. Anomalies in
standard spirometry and alveolar capillary gas diffusion as well as in the ventilatory response to exercise in
patients with heart failure are well documented and mostly relate to an exaggerated or disproportionally high
ventilatory output compared to workload or carbon dioxide production [6, 39, 40]. The steepness with which
V′E rises with respect to V′CO2 (i.e. the V′E/V′CO2 slope) is usually increased in heart failure [6, 41–43],
signifying that while a normal subject has to ventilate almost 20–25 L·min−1 per 1 L·min−1 of carbon dioxide
produced, a patient with heart failure ventilates almost 30–50 L·min−1 for the same amount of carbon
dioxide produced (figure 1). Although this observation has led to the development of valuable prognostic
markers [41], its direct relationship to exertional dyspnoea remains unclear.
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The ventilatory response to exercise in heart failure is usually accompanied by an exaggerated breathing
frequency and a diminished/truncated VT response (figure 2) [5, 6, 44]. Although peak V′E is generally
diminished in patients with heart failure during exercise, submaximal V′E is usually increased at any given
work rate or V′O2 [6, 41–43] and dyspnoea intensity ratings are also increased at any given work rate, V′O2

or V′E [6] compared with age-matched healthy controls [3].

A study by KRAEMER et al. [45] suggested that baseline lung function parameters (in particular forced expiratory
volume in 1 s, forced vital capacity and diffusion capacity of the lung for carbon monoxide (DLCO)) related
better to exercise capacity than resting haemodynamics. Although others have found that this relationship may
be limited to heart failure patients with lower baseline dyspnoea levels [46], it is interesting to note that
patients in the study by KRAEMER et al. [45] had mean spirometric variables that remained in the normal range.
This finding raises the question of whether dynamic, rather that resting, pulmonary function may be
implicated in the generation of the “excessive” ventilatory response to exercise in heart failure patients.
Although dynamic respiratory mechanics has not extensively been studied in this population, a growing body
of evidence suggests that dynamic lung hyperinflation, characterised by progressive increases in end-expiratory
lung volume, as indirectly assessed by changes (decrease) in dynamic inspiratory capacity, may occur during
exercise in heart failure patients and may impart significant “restrictive” constraints on VT expansion with
development of critical mechanical limitation of V′E [5, 6, 47], contributing to symptom limitation during
exercise. Patients with heart failure show reduced resting static lung compliance, even in the absence of overt
pulmonary oedema [48–51], associated with either restrictive or obstructive ventilatory defect on resting
pulmonary function testing [5, 6, 47, 52, 53]. The nature of the airway dysfunction in heart failure is poorly
understood and may reflect bronchial mucosal oedema, airway hyperresponsiveness, the attendant effects of
ageing or tobacco smoking or various combinations of these factors [53–56]. The reduced resting expiratory
reserve volume and the shape and limits of the maximal flow–volume curves in the tidal operating range along
with the encroachment of VT upon the maximal flow-volume envelope in heart failure patients strongly
suggest that operating VT is positioned closer to residual volume, thus increasing the propensity for expiratory
flow limitation (figure 3) [5, 6, 47, 53]. Heart failure patients who present with resting expiratory flow
limitation have been shown to develop significant dynamic lung hyperinflation (as tracked by a decrease in
dynamic inspiratory capacity) in the setting of increased ventilatory demand such as exercise (figures 3 and 4)
[5, 6, 47] suggesting that the mechanical time-constants for lung emptying may be delayed in heart failure
patients to a degree that air trapping may be precipitated during the tachypnoea of exercise.

Although studies examining the ventilation to maximum voluntary ventilation (V′E/MVV) relationship
generally do not suggest a ventilatory limitation in patients with heart failure [3, 5, 6], this relationship may
not be a valid index of the mechanical ventilatory constraints present during exercise, particularly in this
population, as MVV is not a physiological measure of mechanical ventilatory capacity under natural
conditions. In fact it is performed at high lung volumes where maximal expiratory flows are higher than
usually used during exercise. Also, breathing frequency is higher and tidal volume is smaller during the MVV
manoeuvre than during exercise and requires breathing efforts that cannot be sustained for more than a few
seconds [3, 6]. Therefore, MVV reflects a maximal volitional effort at a time when the respiratory muscles are
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not competing for blood flow with locomotor muscles and are in a non-fatigued state. The breathing reserve
is dependent on where one “chooses” to breathe relative to total lung capacity (TLC) and residual volume. At
low lung volumes, the available maximal expiratory airflows are limited due to airway narrowing or closure
and the resultant shape of the expiratory flow–volume curve. At high lung volumes, while considerable
airflow is available, the elastic load on inspiration increases, which may be particularly detrimental to the
patient with heart failure, whose inspiratory muscle may be weakened and/or ischaemic during exercise [57],
and where increases in pressure no longer generate significant incremental volume change. Those factors
could create a situation in which the pressure to breathe (Poes) represents a large fraction of maximal
inspiratory pressure (Pi,max), leading to an increased sense of breathing effort (Poes/Pi,max). In keeping with
this hypothesis, it is not surprising that dyspnoea at the end of exercise in patients with heart failure has been
qualitatively described as unsatisfied inspiration and inspiratory difficulty [58]. D’ARSIGNY et al. [58] studied
the contribution of mechanical factors to exertional dyspnoea and exercise intolerance in 12 patients with
advanced heart failure by performing detailed flow–volume loop analysis during exercise and showed that
both peak V′O2 and the dyspnoea (Borg)/V′O2 slope correlated significantly with the resting VT/inspiratory
capacity ratio, i.e. constraints on VT expansion. Fittingly, the majority of these patients selected qualitative
descriptors of dyspnoea pertaining to “unsatisfied inspiratory effort” during exercise.

New insights into mechanisms of exertional dyspnoea in patients with advanced heart failure have emerged
as a result of a study that used biventricular pacing to increase cardiac output during cardiopulmonary
exercise testing [6]. LAVENEZIANA et al. [6] showed that biventricular pacing was associated with improved
dyspnoea intensity at a given V′E and V′O2. The dyspnoea/V′E slopes were consistently reduced by ∼50%
during exercise in response to active cardiac pacing. Improved dyspnoea and exercise performance during
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active pacing (compared with inactive pacing modality) were associated with a reduced ventilatory
requirement likely due to: 1) delayed onset of metabolic acidosis secondary to improved oxygen delivery or
utilisation or both (as suggested by a consistent increase in the anaerobic threshold), and 2) improved
ventilation–perfusion (V′/Q′) relationships as a result of an improved ability to reduce a higher physiological
dead-space during exercise due to improved pulmonary perfusion (as suggested by the improved V′E/V′CO2

slope and ratios). It is reasonable to assume that the attendant reduction in central respiratory drive is likely
to ameliorate dyspnoea intensity in this occasion. Similarly, reducing excessive lung fluid by ultrafiltration
improves right and left heart haemodynamics and increases exercise tidal volume and dynamic lung
compliance [7, 59].
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Dynamic hyperinflation
With the goal of examining the role of the ventilatory contribution to exertional dyspnoea of heart failure,
O’DONNELL et al. [5] examined the effects of inspiratory muscle unloading during symptom-limited
constant-load exercise using a ventilator. Not surprisingly, during the unassisted control test, peak V′O2

and ventilation were lower than normal in heart failure patients. These patients also had higher
submaximal ventilation and experienced severe dyspnoea, and their ventilatory pattern was characterised
by a relatively shallow VT and a high respiratory rate. Furthermore, exercise flow–volume loop analysis
demonstrated dynamic hyperinflation: there was a progressive rise in end-expiratory lung volume by an
average of 0.26 L. At a peak work rate of only 41% predicted, end-inspiratory lung volume (EILV)
comprised 92% of TLC, suggesting that further expansion of VT was not possible. Pressure support
ventilation, which reduced the tidal inspiratory pleural pressure/time slope by an average of 44%, did not
affect submaximal dyspnoea ratings but, nevertheless, allowed patients to exercise for an additional 3 min
(a 43% increase over the unassisted control test) at ventilation levels >50 L·min−1 without experiencing any
significant rise in dyspnoea. Pressure support also reduced perceived leg discomfort, which contributed
importantly to the increased exercise endurance. Therefore, reduced contractile respiratory muscle effort is
thought to be an important mechanism in dyspnoea relief in this setting. In this study, there were
significant correlations between the decrease in exertional leg discomfort, the reduction in V′O2/time slopes
and the reduction in Poes/time slopes, leading the authors to conclude that pressure support ventilation
mainly allowed alleviation of leg discomfort by unloading the respiratory muscle (and, presumably,
allowing a redistribution of blood flow to the exercising skeletal muscles), rather than by reducing of
dynamic hyperinflation per se. This study and others [60] may therefore suggest that the reduction in
inspiratory capacity during exercise in patients with heart failure may be predominantly mediated by
respiratory muscle fatigue/dysfunction than by the effects of expiratory flow limitation. Although selected
strategies aimed at unloading or training respiratory muscles have successfully improved exercise tolerance
and sometimes symptoms perception in heart failure patients [5, 6, 61–63], the exact prevalence of
respiratory muscle weakness and its relationship to dyspnoea in heart failure is still not clear.

The question of whether the decrease in dynamic inspiratory capacity reflects the increase in end-expiratory
lung volumes (dynamic lung hyperinflation) or the presence/development of respiratory muscle weakness/
fatigue during exercise in heart failure patients warrants attention. If we accept that total lung capacity (TLC)
remains stable throughout exercise [47], we can assume that the decreases in dynamic inspiratory capacity
reflect the increase in the rate of change in end-expiratory lung volumes. Alternatively, reduced cardiac
function, by reducing oxygen delivery and inspiratory muscle regional blood flow, may have increased
respiratory muscle fatigue and/or increase the competition for blood flow with locomotor muscles [64]. If
this is the case, decreases in dynamic inspiratory capacity might reflect a decreased ability to reach TLC
during the inspiratory capacity manoeuvres because of the presence/development of respiratory muscle
weakness/fatigue; given this scenario, the alterations in breathing pattern response usually observed in heart
failure patients at each stage of exercise may reflect decreased functional strength and/or weakness of the
inspiratory muscles, although the role of the latter in heart failure remains conjectural.

Partial reversal of these mechanical abnormalities (i.e. decreased dynamic inspiratory capacity, VT and
inspiratory reserve volume) leads to alleviation of exertional dyspnoea in heart failure patients undergoing
biventricular cardiac resynchronisation therapy, a result that supports the role of such mechanical factors
in dyspnoea causation (figures 2–4) [6]. The observed improved dynamic inspiratory capacity (regardless
of whether it was due to reduced dynamic lung hyperinflation or increased inspiratory muscle strength or
both) resulting from active cardiac pacing would reduce the central motor command output (and central
corollary discharge to the somatosensory cortex) required to drive the ventilatory muscles, thereby
improving dyspnoea. In addition, the observed reduced breathing frequency in response to active cardiac
pacing would also reduce the velocity of shortening of the inspiratory muscles and reduce dynamic
functional weakness in this manner. Improved cardio-pulmonary interaction during active cardiac pacing
in patients with heart failure may favourably alter activation patterns in mechanosensors in the lung,
airways, heart and pulmonary vasculature and reduce unpleasant respiratory sensation in a manner that is
not fully understood [3, 6]. Therefore, improvements in dynamic respiratory mechanics and ventilatory
muscle function along with changes in ventilatory control during exercise are all likely to have salutary
sensory and mechanical consequences for patients with heart failure.

Dynamic lung hyperinflation in heart failure patients has been found to be associated with high VT/inspiratory
capacity ratios, marked reduction of the inspiratory reserve volume and more rapid, shallow breathing at each
stage of exercise as well as at any given submaximal V′O2 and V′E (figures 2–4) [5, 6, 47]. A study by NANAS

et al. [65] showed that resting inspiratory capacity predicted symptom-limited peak V′O2 in heart failure
patients better than any other resting pulmonary function or haemodynamic parameter, confirming the
importance of restrictive ventilatory mechanics.
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We cannot therefore neglect that dynamic lung hyperinflation during exercise in heart failure patients
would be expected to be associated with “high-end” mechanics, as in other restrictive lung diseases.
Increased elastic loading of inspiratory muscles, weakened by an increased velocity of shortening, could also
contribute significantly to ventilatory constraints in heart failure patients [5, 6]. It is conceivable, therefore,
that interventions that improve, directly or indirectly, dynamic ventilatory mechanics during exercise would
improve exertional symptoms and physical performance in these patients [5, 6]. Further studies that engage
oesophageal pressure measurements to evaluate directly abnormalities in respiratory mechanics and that
contain a large number of heart failure patients are needed to definitively elucidate the mechanistic link
between respiratory mechanics and exercise symptoms perception and limitation in this population [59].

V′/Q′ mismatching
When considering other respiratory sources of exertional dyspnoea in heart failure patients, the potential
role of V′/Q′ mismatches must be evoked. Indeed, as the main ventilatory characteristic of patients with
heart failure during exercise is an increased ventilatory response to carbon dioxide production levels
(abnormally high ventilatory equivalent for carbon dioxide) [66], one could suspect the presence of
pathologic increases in dead space (which is closely related to the V′E/V′CO2 relationship, as evident from
the alveolar ventilation equation). Conceptually, increases in dead space in patients with heart failure could
be secondary to the rapid and shallow breathing pattern of heart failure patients on exertion or to the
inability of a failing right ventricle to homogeneously perfuse the lungs [67]. Although some studies have
indeed found relationships between the increased V′E/V′CO2 slope and fractional dead space ventilation in
heart failure patients [66, 68], they have been criticised for deriving their measurement of fractional dead
space ventilation using the alveolar (rather than gas) ventilation equation, in which V′E/V′CO2 and dead
space are intrinsically linked [69]. Other studies evaluating the prevalence and impact of V′/Q′ matching
changes during exercise in patients with heart failure showed that arterial hypoxaemia was rare [70] and
that, when compared to control subjects, a decrease in fractional dead space ventilation could be observed
in both groups, as well as a similar fall in arterial carbon dioxide tension, increase in alveolar–arterial
oxygen gradient and arterial oxygen tension [43]. It seems unlikely therefore that the V′/Q′ mismatches
that may occur during exercise in heart failure patients are the leading mechanistic cause for increased
relative ventilation during exercise in these patients.

Alveolar-capillary membrane dysfunction
The lungs can withstand significant alveolar-capillary membrane impairment without low arterial oxygen
saturation (SaO2). Indeed, in heart failure patients, a low SaO2 at rest or after alveolar-capillary membrane
challenge such as fluid overload or exercise is an unusual event [71–73]. In healthy subjects, rapid infusion of
saline is associated to a slight reduction of spirometric parameters but an unchanged DLCO and SaO2 [74, 75].
Moreover, acute saline infusions reduce peak V′O2 and increase ventilation inefficiency during exercise, as
demonstrated by an increase in the slope of V′E/V′CO2 [74, 75]. However, when normal subjects are pretreated
with β-blockers during fluid overload, DLCO declines due to a reduction of the membrane conductance
component of DLCO, with a partially compensatory capillary volume increase. The DLCO reduction is greater
when a β1–β2 blocker (carvedilol) is used compared with a β1 selective blocker (bisoprolol) (figure 5) [74]. In
contrast, heart failure patients show a decrease in DLCO with even a small amount of saline infusion or
physical exercise [71–73], suggesting that the lung fluid balance is in a critical condition. Indeed, in heart
failure the alveolar-capillary membrane undergoes an extensive remodelling process. This remodelling
includes fibrosis of the lung parenchyma, increased connective tissue deposition and small blood clots in the
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lung [71, 76, 77]. This process negatively influences the main physiological duties of the alveolar-capillary
membrane, which are gas exchange and lung fluid homeostasis. It has been shown that the impairment in
DLCO mirrors the severity of heart failure [40], that DLCO has an independent prognostic role in heart
failure [78], and that the alveolar-capillary membrane is recognised as a target of heart failure treatment [38].
Indeed, several categories of heart failure drugs, such as angiotensin converting enzyme inhibitors [35] and
anti-aldosteronic drugs [36] improve gas diffusion across the alveolar-capillary membrane, while others have
no influence, such as AT1-blockers [79], or even a negative action, such as β1–β2 blockers [38]. Interestingly,
when lung over-hydration of subjects with heart failure is reduced by ultrafiltration, lung mechanics improves
but DLCO remains unchanged [76]. Despite these findings, evidence supporting a direct correlation between
dyspnoea and DLCO in patients with heart failure is lacking, as is evidence supporting a correlation between
DLCO changes during fluid overload or exercise and dyspnoea changes.

Are the ventilatory anomalies of patients with heart failure related to chemo- and ergoreflexes?
Animal studies have suggested that alterations in the chemoreflex might be present in the setting of heart
failure, and have led to the hypothesis that increased chemoreceptor sensitivity could have a causative role in
the excessive ventilation observed in heart failure patients [80]. Rabbit models have shown that peripheral,
rather than central chemoreceptor sensitivity is increased in heart failure and is related to sympathetic
activation and V′E [81, 82]. In humans, CHUA and colleagues [83, 84] showed that hypoxic and central
hypercapnic chemosensivity were increased in subjects with heart failure compared with controls, and were
related to the ventilatory response to exercise. In the clinical context however, it seems difficult to reconcile
these findings and the augmented ventilatory response of heart failure patients during exercise, knowing that
these patients most often maintain normal or near-normal levels of arterial oxygen tension and end-tidal
carbon dioxide tension during exercise [42, 44, 85–88]. As such, other sources of ventilatory stimulation have
been suggested, such as an increased ergoreceptor drive in peripheral skeletal muscle [89, 90]. Indeed, as for
the respiratory muscles, the peripheral skeletal muscles of patients with heart failure show various
morphological, histological, enzymatic and metabolic anomalies that translate into a clinically significant
myopathy. Patients with heart failure frequently present with a cachectic syndrome in which muscle mass loss
(sarcopenia) and dysfunction is a prominent feature, with important negative prognostic implications [91–93].
Histologically, studies on patients with heart failure have consistently described muscle fibre atrophy,
decreased strength and endurance and abnormalities in capillary vascularisation [94–96] along with a shift
from type I (slow-twitch) to type II (fast-twitch) muscle fibres [57, 96–98]. Molecular changes include higher
lactate levels, higher lactate dehydrogenase activity and lower oxidative enzyme activity in heart failure patients
compared with control subjects [96, 97], as well as lower phosphocreatine concentrations [99] and more rapid
development of acidosis on exertion [96, 99, 100].

Among the mechanisms thought to mediate the changes in body composition and muscular abnormalities
in heart failure patients are the overactivity of the sympathetic nervous system as well as alterations in the
regulation of various cytokine systems and neurohumoral components, including tumour-necrosis alpha,
catecholamines, cortisol, renin-aldosterone, neuropeptide Y, leptin ghrelin, adiponectin, growth hormone,
insulin and insulin growth factor-1 [101–103]. Although decreased oxygen delivery and perfusion of the
exercising muscles in patients with failing cardiac function seems an attractive mechanism by which the
peripheral muscle abnormalities may develop, data on this question are equivocal. VOLTERRANI et al. [104]
studied 20 patients with heart failure and found a correlation between peak V′O2 and quadriceps muscle
strength, but not with indices of peripheral blood flow. Similarly, others have reported that among patients
with heart failure, there was a subset of subjects with normal leg blood flow during exercise that
nonetheless stopped exercising because of leg fatigue and had abnormally high elevations in femoral
venous lactate levels, suggesting that exercise limitation was more dependent on intrinsic peripheral muscle
dysfunction than on reduced blood flow [105]. Whether disuse atrophy could be an additional factor
explaining the changes observed in the muscular function and metabolism of heart failure patients is also
unclear but data suggests that deconditioning alone cannot account for the peripheral muscle dysfunction
of these patients, especially in men [106, 107].

Overall, these data make a good point of relating the peripheral muscle dysfunction of heart failure patients
and exercise limitation due to leg fatigue, but its potential relationship to exertional dyspnoea is less
intuitive. However, a considerable body of data suggest that the peripheral skeletal muscles may be a key
player in the generation of dyspnoea in heart failure patients, thought the action of mecano- and
metaboreceptors (termed ergoreceptors) found in skeletal muscles. Mecanoreceptors (myelinated type III
afferents) respond to the mechanical stimulus of the exercising muscle and that metaboreceptors
(unmyelinated type IV afferents) are stimulated by acidosis, prostaglandins and bradykinins [108].
Together, these ergoreceptors mediate a reflex response to exercise (the ergoreflex) that induces an
activation of the sympathetic tonus, tachycardia, vasoconstriction of muscles that are not being exercised
and, importantly, an increase in pulmonary ventilation. Under normal circumstances, the ergoreflex
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therefore serves as a physiological stimulus contributing to the adaptation of the cardiopulmonary system to
exercise. In patients with heart failure however, the early metabolic acidosis and local muscular metabolic
abnormalities contribute to an exaggerated activation of the ergoreflex with, among other consequences, a
disproportional increase in the ventilatory response to exercise (i.e. an elevated V′E/V′CO2 slope). In a
thought-provoking experiment, PIEPOLI et al. [90] reported on the contribution of the ergoreflex to the
exaggerated ventilatory response to exercise in patients with heart failure. Following a bout of upper limb
exertion until exhaustion, regional circulatory occlusion was performed by inflating a cuff proximal to the
exercising muscle for 3 min, effectively trapping the metabolites produced by exercise. Exercise induced a
larger increase in ventilation in heart failure patients compared to controls and, importantly, the ventilatory
rate remained at the same level as maximum exertion during the whole period of cuff inflation in heart
failure patients, whereas it decreased rapidly to almost baseline levels in healthy subjects. Ergoreflex
hyperactivation in the upper and lower limb has also been shown to be correlated to exercise performance
and ventilatory efficiency (V′E/V′CO2 slope) in heart failure, and predominant in subjects with cachexia and
muscle mass depletion [89, 109, 110]. Isolated study of the mecanoreceptors by applying passive
movements to the peripheral limbs has been attempted and showed no significant difference in the increase
in ventilation induced by passive movements between heart failure patients and control subjects, suggesting
that the ergoreflex may mainly be mediated by metabo- rather than mecanoreceptors [111].

In light of these findings, therapeutic interventions aiming at improving the neurohumoral processes
implicated in the ergoreflex response to exercise in heart failure patients may be expected to improve exercise
tolerance and the ventilatory response to exercise in these subjects. Exercise training has been shown to
improve the sympathovagal and ventilatory responses to exercise in patients with heart failure [112], a
finding that may be mediated by a reduction of the exaggerated ergoreflex [90].

Taken together, these results support an important contribution of the peripheral musculature to the
abnormal response to exercise in patients with heart failure, especially with regards to the ventilatory response.

Is dyspnoea related to respiratory muscle dysfunction or fatigue?
Pi,max and transdiaphragmatic twitch pressure elicited by phrenic nerve stimulation are about 20–30%
below normal in patients with chronic heart failure [113–121]. Some of these data also suggest that the
degree of impairment in respiratory muscle function parallels the severity of the cardiac dysfunction, its
aetiology [115, 118–121], clinical prognosis [122] and, interestingly, increased peripheral chemosensitivity [123],
a finding possibly related to an increase in sympathetic activation [124]. Importantly, some investigators
have also reported on the relationship between the severity of respiratory muscle dysfunction and baseline
dyspnoea [117], exertional dyspnoea [125], peak V′O2 [119] and the abnormal V′E/V′CO2 slope [121] in patients
with heart failure. In particular, KASAHARA et al. [121] studied respiratory muscle function in 66 patients with
stable heart failure that underwent cardiopulmonary exercise testing. They found that Pi,max decreased with
worsening baseline functional status (New York Heart Association classification), and was one of the only
independent predictors (along with age) of some of the ventilatory anomalies most commonly encountered in
heart failure during exercise (rapid shallow breathing and V′E/V′CO2 slope). In this study, there were also
modest, but significant correlations between dyspnoea at peak exercise and Pi,max, V′E/V′CO2 slope and the
VT/respiratory rate ratio. These results therefore suggest the potential role of the respiratory muscles as
mediators of the anomalies in respiratory pattern observed in heart failure during exercise, and the possible
yet conjectural implication of their dysfunction in the subjective experience of exertional dyspnoea in heart
failure patients.

Despite several findings suggestive of incipient fatigue, such as a such as the tension-time index of the
diaphragm (TTIdi) at peak exercise of 0.10 in patients with advanced heart failure versus 0.03 in healthy
subjects [125] a decrease in maximal inspiratory [60, 125] and expiratory pressures [125] at the end of
maximal exercise, diaphragm fatigue after maximal incremental cycle exercise testing has never been
clearly showed using phrenic nerve stimulation in a heart failure population.

Muscle perfusion
Interestingly, there is evidence that rats may protect diaphragm blood flow during exercise despite severe left
ventricle dysfunction [126]. JOHNSON et al. [127] showed that both heart failure and healthy subjects achieved
inspiratory tidal flows that approached a similar percent of the maximal available inspiratory flows,
suggesting that the inspiratory flow-generating reserve of the inspiratory muscles at peak exercise was similar
(but occurred at lower lung volumes in the heart failure patients) in heart failure patients and controls. It has
also been postulated that reduced cardiac output that occurs during exercise in patients with heart failure
may result in respiratory muscle ischaemia and ultimately in respiratory muscle fatigue [125, 128].
To investigate whether muscle underperfusion results in low frequency respiratory muscle fatigue, MANCINI

et al. [125] performed supramaximal bilateral transcutaneous phrenic nerve stimulation before and
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immediately after maximal cycle exercise in heart failure and normal subjects. In both normal and heart
failure subjects all parameters of diaphragmatic function (maximal rate of contraction and relaxation, peak
twitch tension and maximal transdiaphragmatic pressure (Pdi)) were unchanged before and after cycle
exercise. Moreover, mean resting and peak Pdi as well as peak TTIdi were greater in heart failure, but far from
the occurrence of fatigue (the fatigue threshold being 0.15). Significant negative correlations were also found
between ratings of perceived dyspnoea and maximal inspiratory and expiratory pressures, while a positive
correlation linked the TTIdi with the Borg score of dyspnoea. However, taking into account the value of
TTIdi, this correlation is unlikely to be clinically meaningful.

In another study, HUGHES et al. [113] using oesophageal and gastric catheters as a volitional technique
(sniff Pdi) and magnetic phrenic nerve stimulation as a non-volitional technique (twitch Pdi), were able to
find a significant decrease in diaphragm strength as assessed by sniff Pdi in heart failure patients compared
with controls. However, paired phrenic nerve stimulation assessed to investigate a possible adaptation of
force frequency characteristics of the diaphragm, showed a trend to increase twitch summation at 5–20 Hz
in heart failure patients. This pattern, which is the opposite of the changes observed in low frequency
fatigue, suggested to the authors an alteration in contractility of the diaphragm possibly explained by
increased proportion of slow-twitch fibres. However, a relatively mild diaphragm weakness was not
deemed to be clinically important in the study conditions. These results cast doubt on the findings of
reduction of volitional measures of inspiratory muscle pressure (see Pi,max) after exercise being associated
with prolonged early recovery of oxygen kinetics, as a partial explanation of the role played by respiratory
muscles in exercise intolerance and symptoms limitation in heart failure patients [60, 129].

Respiratory muscle endurance
In addition to respiratory muscle weakness, muscle endurance in patients with heart failure is decreased to
levels reaching about half that in healthy subjects [130], and this decrease seems disproportionate to the
reduction in inspiratory and expiratory strength [130]. Several mechanisms may be involved. First, the
circulatory supply of energy substrates during diaphragmatic loading increases less in animals with heart
failure than in healthy animals [131]. Secondly, hyperpnoea during endurance testing could predispose to
hyperinflation [5] as a consequence of expiratory flow-limitation [53]. Thirdly, the workload of the
diaphragm is increased [125] because of decreased static lung compliance in patients with heart failure and
pulmonary congestion [132] or pleural effusions.

Mechanisms of structural and functional respiratory muscle changes in heart failure
Several mechanisms can be evoked to explain the prevalent inspiratory muscle weakness in patients with
heart failure. First, animal models have shown that the total number of diaphragmatic actin–myosin
cross-bridges is decreased in heart failure, a finding that could be modulated by exposure to angiotensin
converting enzyme inhibition [133]. Secondly, type IIb (“fast”) muscles fibres, which have been reported to
produce 1.5 to 2.0 times more force than type I (“slow”) fibres [134], are fewer in patients with heart
failure [135]. Thirdly, the cross-sectional area of all types of fibres of the diaphragm and rrelateib cage
muscles is reduced in humans with heart failure [136] and in a pig model of heart failure [137]. Potential
mechanisms participating in the development of these histological changes include decreased regional
blood flow [131] and activation of the ubiquitin–proteasome proteolytic pathway by tumour necrosis
factor [138]. Fourthly, voluntary drive to the respiratory muscles during maximal inspiratory efforts may
be decreased in patients with heart failure [125] and finally, significant oxygen desaturation can be
observed in the accessory respiratory muscles of heart failure patients during exercise [125, 139], a finding
thought to be related to insufficient oxygen delivery to the respiratory muscles and to a greater work of
breathing in the setting of increased metabolic demand in these patients [128, 140].

The resting length of muscles (as indirectly quantified by the normal or decreased value of functional
residual capacity) is usually preserved and thus probably cannot explain the inspiratory muscle weakness.

Therapeutic interventions targeting the respiratory muscles
Studies focusing on therapeutic interventions aiming at improving respiratory muscle function in patients
with heart failure have showed that muscle strength can be increased by selective respiratory muscle
training [141, 142], nasal continuous positive airway pressure [114] or angiotensin converting enzyme
inhibitors [133], and that respiratory muscle training was associated with improvement in the ventilatory
response to exercise [61, 143]. MANCINI et al. [141], showed that selective training of the respiratory muscles
reduces dyspnoea, improves respiratory muscle strength and endurance, and increases exercise capacity. The
benefits of training may result from improved intrinsic properties of the respiratory muscles, a learning
effect, and desensitisation to dyspnoea. In the only randomised controlled trial, however, JOHNSON et al.
[142] found that domiciliary inspiratory muscle training improved inspiratory strength but not exercise
capacity. The results of MANCINI et al. [141] may have been positive because of the more intense supervision
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(hospital-based programme) and training protocol (including expiratory muscle training), and more severe
baseline inspiratory muscle weakness than was the case for the patients of JOHNSON et al. [142] Overall,
however, these studies are often marred by small numbers of patients, varying aetiology and severity of
heart failure, and occasional lack of control groups [141]. The improvement in muscle capacity following
these interventions may result from increased size of muscle fibres, increased number of cross-bridges,
improved perfusion, and enhanced recruitment during voluntary efforts [114, 133].

Conclusion
Exertional dyspnoea is among the dominant symptoms in patients with chronic heart failure and
progresses relentlessly as the disease advances, leading to reduced ability to function and engage in
activities of daily living. Effective management of this disabling symptom awaits a better understanding of
its underlying physiology.

Cardiovascular factors are believed to play a major role in dyspnoea causation in heart failure patients.
However, despite pharmacological interventions such as vasodilators or inotropes that improve central
haemodynamics, patients with heart failure still complain of exertional dyspnoea. Clearly, dyspnoea is not
determined by cardiac factors alone, but likely depends on complex, integrated cardio-pulmonary,
neurohormonal and peripheral interactions.

From our knowledge of the source and mechanisms of dyspnoea in cardiorespiratory diseases, we can
postulate that the mechanisms of exertional dyspnoea in patients with heart failure are multifaceted and
potentially include: 1) increased vascular congestion/distension and interstitial oedema; 2) increased ventilatory
demand (secondary to increased V′/Q′ mismatching and to chemo-, metabo- and ergo-reflexes); 3) dynamic
lung hyperinflation and excessive loading (due to decreased lung compliance from pulmonary oedema or
increased airways resistance) of inspiratory muscles; and 4) ventilatory and peripheral muscle dysfunction.

It emerges that any intervention targeted to reducing the excessive ventilatory demand during activity,
improving dynamic respiratory mechanics and respiratory/peripheral muscle function should alleviate the
perception of exertional symptoms and consequently improve exercise performance in the heart failure
population.
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