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ABSTRACT: Acute lung injury is associated with a variety of histopathological alterations, such

as oedema formation, damage to the components of the blood–air barrier and impairment of the

surfactant system. Stereological methods are indispensable tools with which to properly

quantitate these structural alterations at the light and electron microscopic level. The

stereological parameters that are relevant for the analysis of acute lung injury are reviewed in

the present article.
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S
tereology is the method of choice with
which to obtain quantitative structural
data in microscopy. It is therefore an

essential tool for making statistically valid com-
parisons in experimental studies on acute lung
injury (ALI), e.g. when the effects of different
treatment modalities are tested. The present
article describes the stereological parameters that
are relevant for the assessment of the degree of
injury in ALI. For an introduction to and a more
comprehensive treatment of stereology, the
reader is referred to the literature [1–6] and to
the article by NYENGAARD and GUNDERSEN [7] in
the present issue of the European Respiratory
Review (ERR). General aspects of lung stereology
have been reviewed recently [8, 9].

DEFINITION AND EPIDEMIOLOGY OF ALI
The clinical entity of ALI in its most severe form,
acute respiratory distress syndrome (ARDS), was
originally described by ASHBAUGH et al. [10] in
1967. The most widely adopted current definition
of ALI and ARDS is based on the recommenda-
tions given by the American European Consen-
sus Conference (AECC) committee [11]. ALI and
ARDS are defined as a syndrome of acute and
persistent lung inflammation with increased
vascular permeability characterised by bilateral
chest infiltrates, hypoxia (partial pressure of
arterial oxygen/fraction of inspired oxygen
,40 kPa (,300 mmHg) for ALI and ,26.7 kPa
(,200 mmHg) for ARDS) and exclusion of a
cardiogenic cause (no left atrial hypertension).
For the purposes of the present article, the term
ALI also includes ARDS as the severe end of the
spectrum of ALI. While the AECC definition is
simple to apply in the clinical setting and it
reflects the fact that the severity of clinical lung
injury varies, its major disadvantage is that it
does not contain any information on the under-
lying cause [12]. The development of ALI is
associated with a variety of clinical disorders,

including direct pulmonary injury (e.g. from
pneumonia or aspiration) and indirect pulmon-
ary injury (e.g. from trauma or sepsis) [12, 13]. A
special form of ALI manifests as primary graft
dysfunction in lung transplantation. Its main
cause is ischaemia (I)/reperfusion (R) injury
[14–16].

Recent data suggest that ALI is more common
than initially thought, with crude incidences at
59–79 per 100,000 person-yrs in a US population
[17]. Earlier data ranged ,5–30 per 100,000
person-yrs (reviewed in [18, 19]). Currently
reported mortality rates are ,40% [17, 18].

HISTOPATHOLOGICAL ASPECTS OF ALI
The histopathological features of ALI have been
collectively termed diffuse alveolar damage. This
is, however, a rather unspecific term. Diffuse
alveolar damage can be divided into an early
exudative phase, lasting for ,1 week, and a later
fibroproliferative phase in the second and third
weeks [20–24]. The exudative phase is charac-
terised by interstitial and intra-alveolar oedema,
intra-alveolar haemorrhage, neutrophil accumu-
lation and hyaline membranes consisting of
fibrin, plasma proteins and surfactant. At the
ultrastructural level, swelling and necrosis of
capillary endothelial cells and type I alveolar
epithelial cells are noted, leading to a denudation
of the basal lamina. In the fibroproliferative
phase, organisation with proliferation of type II
alveolar epithelial cells (cuboidal metaplasia),
alveolar septal thickening and finally fibrosis
are present. It is generally believed that the
histopathological features of ALI reflect a typical
response pattern to lung injury irrespective of the
underlying cause. However, subtle but important
differences, e.g. between ALI resulting from
direct or indirect lung injury, are detectable by
more detailed analysis involving electron micro-
scopy and stereology [25].
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The clinical symptoms of ALI are a direct consequence of
severe damage to the blood–air barrier and subsequent
protein-rich (permeability) pulmonary oedema [26, 27]. In
ALI resulting from direct lung injury, alveolar epithelial cells
are the first to be altered, while ALI resulting from indirect
lung injury begins with alteration of capillary endothelial cells.
Intra-alveolar oedema, together with other factors, such as
reactive oxygen and nitrogen species and neutrophil elastase,
leads to alterations in the pulmonary surfactant system, which,
in turn, lead to the decreased compliance that can be observed
in ALI patients [28–34]. Thus, the components of the blood–air
barrier and the surfactant system are primary targets in ALI
and are therefore the structures that should be addressed when
assessing ALI using stereology.

Although an animal model that unequivocally mimics key
aspects of human ALI is still lacking [13], there are several
animal models available that have proven useful in the study
of either direct or indirect pulmonary injury [35]. In these
animal models of ALI, the structural changes lead to significant
disturbances of functional performance. It is thus important to
quantitate them properly, i.e. by means of stereology.

STEREOLOGICAL ASSESSMENT OF ALI
Lung preparation for microscopy
The following two criteria must be met in order to perform
proper lung stereology.

Adequate fixation and processing
Lung preparation protocols, from fixation over dehydration
and embedding to sectioning, need to be controlled very
carefully to avoid alterations of the tissue dimensions. It is
impossible to perform good stereology with bad material. Since
the fine structural details of the constituents of the alveolar
blood–air barrier and the various surfactant forms are beyond
the resolution limit even of advanced light microscopy, speci-
men preparation for transmission electron microscopy is a
prerequisite for a complete stereological analysis of ALI. Subtle
but functionally important alterations would go undetected at
the light microscopic level, e.g. only by electron microscopy is it
possible to distinguish permeability oedema due to primary
blood–air barrier injury in ALI from the lesions in hydrostatic
oedema [36–39] and to analyse intra-alveolar surfactant subtype
alterations [40–43]. Primary chemical fixation ‘‘from behind’’ by
controlled vascular perfusion with a glutaraldehyde-containing
fixative followed by a phospholipid-stabilising protocol is the
method of choice when subsequent stereological analysis of
oedema and surfactant has to be performed [44–49].

Systematic uniformly random sampling in a cascade
sampling design
Stereology is basically a sampling theory and, thus, the steps to
obtain the tissue samples that are finally analysed at the
microscope are an integral part of a stereological study. Final
results can only be unbiased when the sampling was such; the
most efficient way to achieve this is known as systematic
uniformly random sampling. In experimental studies, the
starting point for sampling, and the end-point for data
analysis, should always be the total lung volume (V(lung)).
This can be measured by fluid displacement recorded by
weighing [50] or, preferably, by the Cavalieri method [51, 52].
Starting from there, a cascade of sampling steps is followed,

ideally in a fractionator design, via the light microscopic to the
electron microscopic level (described by NYENGAARD and
GUNDERSEN [7] in the present issue of the ERR). Thus, global
parameters, such as the volumes of parenchyma (V(par, lung))
and nonparenchyma (V(nonpar, lung)) or surface areas of
alveolar epithelium (S(alvepi)) and capillary endothelium
(S(capendo)), can be estimated (see table 1).

Pulmonary oedema
Typically, the development of pulmonary oedema follows a
sequence of fluid accumulation in various compartments in the
lung [22, 53, 54]. First, fluid appears in the connective tissue
compartment around bronchi and larger blood vessels, the
peribronchovascular space. Then, fluid enters the alveolar
septal interstitium and, eventually, the alveolar space after the
two interstitial compartments are filled (fig. 1). As a global
indicator of fluid accumulation, the lung wet/dry ratio is
commonly used. However, this method does not give any
information about the compartment in which oedema occurs.
In contrast, a stereological approach allows for quantitative
lung oedema analysis in its preserved microorganisation and
location within the organ, as well as for the dissection of the
particular contributions of peribronchovascular, septal and
intra-alveolar oedema. This approach has been used success-
fully in various animal models of I/R injury, where it has been
demonstrated that intra-alveolar oedema is the functionally
most significant [42, 55–57]. These studies have also shown
that oedema assessment by stereology better reflects the
functional status of the lung than does wet/dry ratio analysis.

Recommended parameters for the stereological analysis of
pulmonary oedema are the total volume of oedema (V(oed, lung))
and volumes of intra-alveolar (V(alvoed, oed)), septal (V(sepoed,

oed)) and peribronchovascular (V(pbvoed, oed)) oedema (table 1).

Lung cell types
The number and mean size of a given cell type is essential
information when hyperplasia and/or hypertrophy of these
cells are to be quantitated, a typical case being type II alveolar
epithelial cells in ALI (fig. 2). This cell type is usually more
resistant to injury than the type I cell [20, 23, 58] and serves as
the progenitor cell for the regeneration of the adult alveolar
epithelium [59]. It is, however, important to note that the
stereological analysis of certain cell types can sometimes cause
problems when pathological alterations, e.g. the occurrence of
intermediate cells expressing both type I and type II cell
markers during the regeneration of the alveolar epithelium
after lung injury [60], make their classification difficult. After
all, it is only possible to count what is identifiable [61].

Recommended parameters for the stereological analysis of the
cellular composition of the alveolar septum are the total cell
volume per lung (V(cell, lung)), the total cell number per lung
(N(cell, lung)), the number-weighted mean cell volume (n̄N(cell))
and the volume-weighted mean cell volume (n̄V(cell)) (table 1).

Blood–air barrier
The blood–air barrier has to face a bioengineering dilemma in
that it has to be both thin and strong [62, 63]. According to Fick’s
law of diffusion, oxygen flow across a tissue barrier is directly
proportional to the cross-sectional surface area and inversely
proportional to the thickness of the barrier. The human lung, with
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an alveolar surface area of ,140 m2 and a harmonic mean
thickness of the blood–air barrier of ,0.6 mm, is optimised in that
respect [64]. Intra-alveolar and interstitial oedema, as well as
oedematous swelling of the alveolar epithelium or capillary
endothelium, increase the effective barrier thickness, thereby
leading to decreased oxygenation in ALI.

The blood–air barrier consists of the alveolar epithelium, the
capillary endothelium and the interstitium in between (fig. 2).
The alveolar epithelium is a mosaic of squamous type I cells
that line ,97% of the surface with their thin cell extensions and
cuboidal type II cells. Type II cells have the following two main
functions: 1) they serve as the cellular source of surfactant and
2) they contribute to the regeneration of the alveolar
epithelium under normal and pathological conditions, such
as ALI. The capillary endothelium is of the continuous
(nonfenestrated) type. At the thin parts of the blood–air
barrier, which constitutes over half of the total surface area,
the interstitium is reduced to a fused epithelial and endothelial
basal lamina. Stereological assessment of the thickness of the
blood–air barrier components (alveolar epithelium, intersti-
tium, capillary endothelium) and their degree of damage
(normal, swollen, fragmented) has been performed in animal
models of I/R injury [42, 55, 56].

Recommended parameters for the stereological analysis of the
blood–air barrier (table 1) are the arithmetic mean thickness of
the blood–air barrier (t̄(bab)) and its constituents, the alveolar
epithelium (t̄(epi)), the interstitium (t̄(int)), and the capillary
endothelium (t̄(endo)). For assessment of the degree of damage,
the parameters are the surface fractions of normal (SS(normal/...)),
swollen (SS(swollen/...)) and fragmented (SS(fragmented/...)) alveo-
lar epithelium (SS(.../alvepi)) and capillary endothelium (SS(.../

capendo)), respectively.

Surfactant
The surfactant system has biophysical (surface tension reduc-
tion) and immunomodulatory functions that are essential for
normal lung function [31, 65–68]. Thus, surfactant keeps lung
alveoli open, dry and clean. Surfactant is composed of ,90%

TABLE 1 Recommended parameters for the assessment
of acute lung injury

Parameters

Global

Volume V(lung)

VV(par/lung)

VV(nonpar/lung)

Surface area S(alvepi)

S(capendo)

Oedema

Volume V(oed, lung)

VV(alvoed/oed)

VV(sepoed/oed)

VV(pbvoed/oed)

Lung cells

V(cell, lung)

N(cell, lung)

n̄N(cell)

n̄V(cell)

Blood–air barrier

Thickness t̄(bab)

t̄(epi)

t̄(int)

t̄(endo)

Degree of damage SS(normal/alvepi)

SS(swollen/alvepi)

SS(fragmented/alvepi)

SS(normal/capendo)

SS(swollen/capendo)

SS(fragmented/capendo)

Surfactant

Intra-alveolar SS(alvsurf/alvepi)

V(alvsurf, lung)

VV(lbl/alvsurf)

VV(tm/alvsurf)

VV(mv/alvsurf)

VV(uv/alvsurf)

Intracellular V(lb, lung)

V(lb, type II)

N(lb, type II)

n̄N(lb)

n̄V(lb)

After estimation of total lung volume (V(lung)) with the Cavalieri method, which

can easily be integrated into the sampling procedure, point-counting in a

cascade-sampling design estimates all necessary subcomponent volumes (VV)

from which total volumes (V) can be derived by multiplication by the reference

volume. For surface area (S), intersection counting is used accordingly. The

number (N) is estimated by disector counting. Number-weighted mean volume

(n̄N) is estimated either by local methods, e.g. the nucleator or rotator, or

globally by V/N. The volume-weighted mean volume (̄nV) is estimated by point-

sampled intercepts. If both the number-weighted and the volume-weighted

mean volumes are known, information on the size distribution of particles can

be derived, since n̄V5n̄N?(1+CV2
N(n)), where CV is coefficient of variation and n̄ is

mean volume. Arithmetic mean barrier thickness (t̄) is estimated with a

combination of point and intersection counting. SS: surface fraction; par:

parenchyma; nonpar: nonparenchyma; alvepi: alveolar epithelium; capendo:

capillary endothelium; oed: oedema; alvoed: intra-alveolar oedema; sepoed:

septal oedema; pbvoed: peribronchovascular oedema; bab: blood–air barrier;

epi: epithelium; int: interstitium; endo: endothelium; alvsurf: intra-alveolar

surfactant; lbl: lamellar body-like forms; tm: tubular myelin; mv: multilamellar

vesicles; uv: unilamellar vesicles; lb: lamellar bodies; type II: type II cell.

���
���

FIGURE 1. Light micrograph from a pig lung subjected to ischaemia/

reperfusion injury. For details about the experiment conditions see [55]. Intra-

alveolar oedema fluid (Oed) is partly filling alveolar lumina (Alv). Scale bar5100 mm.
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lipids, mainly saturated phosphatidylcholine, and ,10%
proteins, including the surfactant proteins (SP)-A, SP-B, SP-C
and SP-D. Surfactant is also morphologically very complex.
Different surfactant subtypes with a highly organised structure
that can be distinguished morphologically (by electron micro-
scopy) correspond to different stages in surfactant metabolism.

The alveolar epithelium is lined by a thin fluid layer.
Surfactant functions in and on this layer. It is synthesised,
stored, secreted and, to a large extent, recycled by type II
alveolar epithelial cells [59, 69]. Therefore, an intracellular
surfactant pool in type II cells and an intra-alveolar surfactant
pool at the surface of the alveolar lining layer, as well as within
its hypophase, can be distinguished (fig. 2). Within type II
cells, surfactant is stored in lamellar bodies [70, 71]. Surfactant
material present in lamellar bodies is secreted into the alveolar
lumen via exocytosis [72].

Intra-alveolar surfactant consists of several subtypes. After
secretion, lamellar body-like forms transform into tubular
myelin figures with a unique lattice-like structure. Tubular
myelin is considered to be the immediate precursor of the
surface film. ‘‘Spent’’ surfactant components are present in the
hypophase as small unilamellar vesicles. The major route of
surfactant clearance is re-uptake by type II cells. Within type II
cells, surfactant material can be either recycled or degraded.
Other routes of surfactant clearance include ingestion and
lysosomal degradation by alveolar macrophages and clearance
via the airways.

As mentioned previously, surfactant inhibition is one of the
hallmark events in the pathophysiology of ALI [12, 28, 32–34,
73–75]. Therefore, surfactant analysis is essential when asses-
sing ALI and, in principle, surfactant can be analysed in the
following two ways.

Biochemical/biophysical surfactant analysis

Typically, surfactant analysis is based on material obtained by
bronchoalveolar lavage (BAL). This approach allows for
biochemical (surfactant composition) and biophysical (surfac-
tant function) analysis. In addition, several other components
of the BAL material can be measured, e.g. the cellular
composition or inflammatory cytokines. However, only the
intra-alveolar surfactant compartment can be harvested by
BAL and any topographical information is lost [67, 76].
Moreover, BAL and the isolation of surfactant material require
strictly controlled conditions to avoid experimental error and
to make results comparable [77–79]. This is even more true in
ALI, when analysis is further complicated by the presence of
intra-alveolar oedema fluid in the BAL samples [80].

Morphological surfactant analysis

An alternative approach to analysing surfactant is by electron
microscopy and stereology. It has the great advantage of
allowing for the study of the intra-alveolar as well as the
intracellular surfactant pool in its natural location and
preserved microorganisation (fig. 2) [81]. This approach is
perfectly suited for experimental studies.

Analysis of intra-alveolar surfactant
After differential centrifugation of intra-alveolar surfactant
material harvested by BAL, surface active large aggregates
(LA), ultrastructurally predominantly corresponding to lamel-
lar body-like forms and tubular myelin, and converted inactive
small aggregates (SA), ultrastructurally predominantly corre-
sponding to unilamellar vesicles, can be distinguished [28, 67,
82]. This correlation allows for the comparison of BAL and
stereological data. Thus, surfactant inactivation in ALI can be
expressed as an increase in the SA/LA ratio [28] or as an
increase in unilamellar vesicles relative to lamellar body-like
forms and tubular myelin. Stereological assessment of intra-
alveolar surfactant has been performed in animal models of
lung injury [40–43]. I/R injury studies have shown that the
amount of surface active tubular myelin correlates with post-
ischaemic lung function [42] and that intra-alveolar surfactant
alterations are independent from the presence of intra-
alveolar oedema, therefore being not only a result but also a
cause of intra-alveolar oedema formation [41]. This approach
can also be used to analyse exogenous surfactant preparations
(including their inactivation and its therapeutic prevention) in
vitro [83].

Recommended parameters for the stereological analysis of
intra-alveolar surfactant are surface fraction of alveolar
epithelium covered with surfactant (SS(alvsurf/alvepi)), total
intra-alveolar surfactant volume per lung (V(alvsurf, lung)), and
volume fractions of its constituents, namely lamellar body-like
forms (VV(lbl/alvsurf)), tubular myelin (VV(tm/alvsurf)), multi-
lamellar vesicles (VV(mv/alvsurf)) and unilamellar vesicles
(VV(uv/alvsurf)) (table 1).

��� ��	
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FIGURE 2. Transmission electron micrograph from a rat lung subjected

to ischaemia/reperfusion injury. For details about the experimental conditions see

[41, 42]. Three alveolar lumina can be seen, one of which is partly filled with protein-

rich oedema fluid (Oed). The alveolar epithelial type II cell contains several lamellar

bodies (LB). Intra-alveolar surfactant material (arrow) is present within oedema fluid.

The blood–air barrier shows swellings of alveolar epithelial type I (Epi) and capillary

endothelial (Endo) cells. Scale bar51 mm.

STEREOLOGY OF ALI M. OCHS

118 VOLUME 15 NUMBER 101 EUROPEAN RESPIRATORY REVIEW



Analysis of intracellular surfactant
In the analysis of intracellular surfactant, lamellar bodies are
seen as the morphological equivalent of the intracellular
surfactant pool. This approach has been used in human lungs
[84] and in various animal models [85, 86]. In I/R injury, intra-
alveolar surfactant alterations, and thus a loss of surface-active
surfactant forms in the alveoli, are associated with a decreased
intracellular surfactant pool due to a decrease in the number of
lamellar bodies per type II cell, indicating a compensatory
increase in lamellar body secretion [85].

Recommended parameters for the stereological analysis of
intracellular surfactant are the total lamellar body volume per
lung (V(lb, lung)) and per type II cell (V(lb, type II)), number of
lamellar bodies per type II cell (N(lb, type II)), number-weighted
mean lamellar body size (n̄N(lb)) and volume-weighted mean
lamellar body size n̄V(lb)) (table 1).

CONCLUSIONS
Stereology is a set of accurate and efficient methods for the
quantitative characterisation of the physical properties of
biological objects based on sampling rules and microscopic
measurements. It thus provides lung researchers with tools
that are essential to obtain valid data for the quantitative
assessment of the ultrastructural alterations that are seen in
acute lung injury. Physician-scientists should be encouraged to
apply stereology to better understand lung structure and
function in health and disease and, finally, to find better
treatment options for patients with lung diseases.
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