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Abstract
COPD is a major cause of morbidity and mortality worldwide. Multimorbidity is common in COPD
patients and a key modifiable factor, which requires timely identification and targeted holistic management
strategies to improve outcomes and reduce the burden of disease.
We discuss the use of integrative approaches, such as cluster analysis and network-based theory, to
understand the common and novel pathobiological mechanisms underlying COPD and comorbid disease,
which are likely to be key to informing new management strategies.
Furthermore, we discuss the current understanding of mechanistic drivers to multimorbidity in COPD,
including hypotheses such as multimorbidity as a result of shared common exposure to noxious stimuli
(e.g. tobacco smoke), or as a consequence of loss of function following the development of pulmonary
disease. In addition, we explore the links to pulmonary disease processes such as systemic overspill of
pulmonary inflammation, immune cell priming within the inflamed COPD lung and targeted messengers
such as extracellular vesicles as a result of local damage as a cause for multimorbidity in COPD.
Finally, we focus on current and new management strategies which may target these underlying
mechanisms, with the aim of holistic, patient-centred treatment rather than single disease management.

Overview of multimorbidity in COPD
COPD is a major cause of morbidity and rising mortality worldwide [1, 2]. More than 90% of COPD deaths
occur in low- and middle-income countries [3] and COPD mortality is predicted to rise further in these
countries despite measures to reduce exposure to risk factors, such as tobacco control policies and declining
poverty [4]. Importantly, multimorbidity has been identified as a key modifiable factor, which requires
greater recognition, focus and management to improve outcomes and reduce burden of disease in COPD [5].

Whereas comorbidity describes the burden of illness coexisting with a particular disease of interest,
multimorbidity is defined as the presence of multiple chronic conditions [6, 7] in an individual. It
acknowledges that health conditions may overlap, vary in severity and change in importance over time
(figure 1). Multimorbidity is a global health priority [8] and its prevalence increases substantially with age
and levels of deprivation [9]. COPD is present in the majority of multimorbid patients [9] and
multimorbidity in COPD increases the likelihood of hospital admission [10, 11] and healthcare costs [12],
reduces quality of life and exercise tolerance [13] and increases mortality [14]. Studies have shown that
patients with COPD are more likely to have comorbid disease compared with the general population, with
the most prevalent comorbidities being osteoporosis, hypertension and gastro-oesophageal disease (table 1).
Importantly, all these studies recognise that concomitant chronic diseases are often misdiagnosed or
undiagnosed in patients with COPD and are thus untreated.
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Approaches to understanding complex mechanisms underlying multimorbidity in COPD
Conventionally when studying multimorbidity in COPD, researchers have focused on a single coexistent
disease or group of diseases. However, recent evidence supports a more integrative approach, in the hope
that this could reveal disease clusters and novel pathobiology mechanisms, leading toward a better
understanding and, possibly, integrated co-management of multimorbidity [26–28].

Unsupervised cluster-based analysis uses multivariate techniques to organise information in an unbiased
way so that heterogeneous groups of patients can be classified into relatively homogeneous groups or
“clusters” [29]. Several studies have used this approach and identified a COPD phenotype with a high
prevalence of comorbid disease [30–32] and higher levels of systemic inflammatory markers [31, 32].
Furthermore, GARCIA-AYMERICH et al. [31] showed measures of systemic inflammation did not correlate
with bronchial inflammation suggesting that systemic rather than bronchial inflammation may be driving
the origins of both COPD and comorbid disease. To investigate the role of systemic inflammation in
multimorbidity further, VANFLETEREN et al. [33] used self-organising maps, an alternative neural
network-based nonhierarchical clustering approach, to identify five comorbidity clusters (“less
comorbidity”, “cardiovascular”, “metabolic”, “psychologic” and “cachectic” clusters) suggesting that
different pathophysiological pathways underlie these clusters.

TABLE 1 Prevalence of comorbidities in England compared to patients with COPD

Prevalence in control population# Prevalence in COPD Reference(s)

Osteoporosis/osteopenia 18–22 50–70 [16, 17]
Hypertension 34–41 40–60 [10, 18]
GORD 33 30–60 [19]
Skeletal muscle dysfunction 9 32 [20]
Depression 7–12 25 [21]
Ischaemic heart disease 15 10–23 [22]
Diabetes 6–10 12–13 [10, 23]
Previous stroke 3 10–14 [18, 23]
Arrhythmia 5–11 11–12 [18]
Congestive heart failure 4 5–19 [18, 24]
Obesity 17–32 18–54 [25]

Data are presented as %. GORD: gastro-oesophageal reflux disease. Adapted from [15]. #: control
population from the same study(ies) as the COPD comorbidity prevalence reported.
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FIGURE 1 Conceptual diagram of comorbidity and multimorbidity in COPD. GORD: gastro-oesophageal reflux
disease.
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Although clustering approaches have shown promise in identifying COPD subtypes, further work has
questioned the reproducibility of these analyses. For example, CASTALDI et al. [34] demonstrated only
modest reproducibility of COPD clustering results across multiple independent cohorts and suggested that
COPD heterogeneity is best characterised by continuous disease traits coexisting within the same
individual rather than separate identifiable COPD subtypes. More recently, studies have demonstrated that
continuous measures of disease (disease axes) were better at predicting emphysema progression [35] and
mortality than subtypes alone [36]. In contrast, BURGEL et al. [37] was able to demonstrate reproducible
clustering across cohorts in relation to mortality, with enrichment for multimorbidity in subgroup I.
Together, these studies suggest there may be multiple distinct sets of subtypes that depend on a specific
clinical outcome of interest.

Mathematical-based network theory demonstrates that disease co-occurrence is not the result of simple
chance, but as a result of genetic predisposition in concert with cumulative pathobiological processes in
response to biological stressors [28]. For example, PARK et al. [38] showed that diseases that share genes or
involve proteins that interact with each other show elevated comorbidity, demonstrating correlations
between the structure of cellular networks and disease patterns in the population. This approach to network
analysis maps the molecular and phenotypic interactions that could provide new insights into the
pathobiology of multimorbidity in COPD [39]. Using this approach, GROSDIDIER et al. [40] identified
several shared genes, proteins and biological pathways common to the most prevalent COPD
multimorbidities (such as ischaemic heart disease, diabetes and obesity) suggesting common biological
mechanisms. Furthermore, several of these were targets of the tobacco exposome, suggesting a link for the
common exposure theory. DIVO et al. [41] used network analysis to show that the prevalence of
comorbidities (number of nodes) and number of simultaneous comorbidities is higher in COPD patients
compared with controls. In addition, the COPD comorbidity network was found to have a “scale-free”
architecture, indicating the existence of a few, highly connected nodes (diseases) in the network, so-called
“hubs” that may play a key pathogenic role [42]. Based on this, they proposed that therapies targeted
towards these hubs could result in improvement of outcomes in multiple diseases. Finally, they identified a
number of “modules” consisting of coexisting diseases, which are interlinked beyond simple coincidence
[41]. For example, they described module 1A comprised of 17 nodes connected by 81 edges around the
theme of older COPD individuals with cardiovascular comorbidities (such as hypertension and coronary
artery disease) and clinical characteristics known to confer worse prognosis in patients with COPD (forced
expiratory volume in 1 s (FEV1) <50%, modified Medical Research Council score >2, 6-min walk distance
<350 m). Interestingly, these were similar to groups described by the cluster analysis studies [31, 32], thus
reinforcing the concept that targeting key modules could be important for achieving meaningful outcomes
from treatment across conventional single-morbidity strategies.

Towards an understanding of mechanistic drivers to multimorbidity in COPD
Understanding the mechanisms that could be driving these relationships between COPD and coexisting
disease is key to developing novel strategies for treating this complex and heterogeneous disease. In this
section, we explore the potential relationships between mechanistic drivers and examine the evidence
supporting the competing hypotheses of disease genesis.

Current knowledge in the field of mechanisms underlying multimorbidity in COPD is summarised in
figure 2.

Multimorbidity in COPD over the life course
Early origins of disease
Since the seminal work of LANGE et al. [43] on lung function trajectories leading to COPD, there has been
increasing interest in lung function development and its early determinants. These analyses and several
other studies demonstrated that a low FEV1 in early adulthood is important in the genesis of COPD;
however, an accelerated decline in FEV1 is not necessary [44, 45].

A normal lung function trajectory throughout life has three phases: a growth phase from birth to early
adulthood, a plateau phase from ∼20 years and a decline phase resulting from physiological ageing.
Although smoking is still a major factor, other environmental, genetic and developmental factors with
diverse biological mechanisms and effects can lead to an abnormal lung function trajectory, resulting in
respiratory disease in adulthood [46]. In addition to COPD, a lower peak lung function in early adulthood
is associated with cardiovascular and metabolic disease as well as premature mortality [44]. Therefore,
early-life lung health has important implications for multimorbidity as well as single disease entities and
further research is needed to better understand the biological mechanisms underlying these different
abnormal lung trajectories.
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Recently, KACHROO et al. [47] used network approaches to investigate the epigenetic modifications caused
by in utero smoke exposure, which may link to risk for COPD in adulthood. They identified several
putative disease pathways supportive of exposure-related and age-associated developmental origins of
COPD.

COPD and many of its comorbidities are often recognised and diagnosed too late, and therefore
investigating these biological mechanisms underlying different abnormal lung function trajectories is key
to impacting on early diagnosis and informing new therapeutic and preventative interventions including
vaccinations [48, 49].

Environmental exposures and risk factors
Multimorbidity can arise as a consequence of environmental exposures, such as cigarette smoke, biomass
fuel and physical inactivity, leading to multiple organ damage and disease.

Smoking
Tobacco smoke exposure is considered the primary risk factor for COPD, and is estimated to account for
up to 80–90% of cases in the developed world. Furthermore, smoking is an important risk factor for other
comorbid conditions such as lung cancer [50], cardiovascular disease [51] and osteoporosis [52]. Several
studies have tried to unpick the complex relationship between common exposure and/or risk factors and
presence of comorbid disease in COPD.

Large prospective cohort studies have demonstrated that the association between lung function impairment
and cardiovascular disease was largely due to common risk factors such as age, sex, race, smoking,
hypertension, diabetes, cholesterol and fibrinogen levels [53]. This was further supported by VAN

REMOORTEL et al. [54] who found prevalence of premorbid risk factors (e.g. obesity and hypertension) and
comorbid diseases (e.g. heart disease, diabetes, skeletal muscle dysfunction and osteoporosis) was
comparable in patients with COPD and in smokers, but was higher than in healthy nonsmokers.
Importantly, physical activity and smoking were more strongly associated with multimorbidity than airflow
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FIGURE 2 Drivers, mechanisms and outcomes for multimorbidity in COPD. EVs: extracellular vesicles; GORD: gastro-oesophageal reflux disease.
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limitation. Furthermore, these findings were in accordance with THOMSEN et al. [55], who reported that the
risks of cardiovascular comorbidities and all-cause mortality were increased in former and current smokers
with COPD, but not in never-smokers with COPD (Copenhagen General Population Study).

Together, these studies provide evidence that exposure to shared risk factors (such as tobacco smoke) may
contribute to the multimorbid burden in COPD, even in early and pre-clinical disease. This underlines the
importance of treating modifiable risk factors (such as smoking cessation) early to improve multimorbid
ill-health.

Although it is clear that there are associations between shared risk factors and multimorbidity in COPD,
other studies suggest that airflow limitation itself has a super-added risk on presence and outcome of
multimorbidity. A large (>20000 subjects), population-based study in the United States showed that
airflow obstruction was associated with greater comorbidity, independent of shared risk factors such as age,
sex, race, smoking status and body mass index (BMI). In addition, those with respiratory impairment and
comorbid disease were at significantly higher risk of death and hospitalisation [10]. This was in line with
data from SIN et al. [56], which showed a striking relationship between reduced FEV1 and mortality from
ischaemic heart disease independent of smoking. Where even a modest decline of FEV1 (from mean 109%
predicted to 88% predicted), was associated with a five-fold increase in death from ischaemic heart disease,
independent of baseline smoking status and other potential confounding factors such as age, gender, blood
pressure, BMI and diabetes. This relationship was not only shown in cross-sectional data, but also
prospectively in the Lung Health Study of nearly 6000 subjects, where decline in FEV1 predicted death
from cardiovascular disease, independent of smoking (p=0.002) [57].

Based on these studies, one well-described link for this association of cardiovascular disease with COPD,
independent of common risk factors, is the role of low-grade chronic systemic inflammation present in
both diseases, which could potentially be driving both pathologies. This is further discussed later.

Physical inactivity
Inactivity is prevalent in patients with COPD and is a major risk factor for many systemic manifestations
of COPD [54]. Patients with COPD become less active early in the disease course [58] and this becomes
more marked during exacerbations [59]. Furthermore, inactivity in COPD is associated with increased
exacerbations and early mortality [60, 61]. Inactivity may lead to systemic consequences in COPD by
several different mechanisms.

Although the relationship between inactivity and COPD is multifactorial, collective evidence suggests that
dynamic hyperinflation plays a major role in exercise limitation [62]. Additionally, hyperinflation is
directly associated with worse patient-centred outcomes such as progressive breathlessness, anxiety and
lower quality-of-life scores, all of which impact on comorbid disease [63]. However, treatment of
hyperinflation with pulmonary rehabilitation, bronchodilators and lung volume reduction interventions does
not fully reverse the effects of inactivity, suggesting that there are other factors at play.

Skeletal muscle wasting is an important consequence of inactivity in patients with COPD. Furthermore, skeletal
muscle wasting may lead to a “downward disease spiral”, whereby quadriceps myopathy and anaerobic
metabolism at low exercise intensity leads to a further reduction in exercise capacity [64]. Inactivity results
in protein catabolism within skeletal muscle, leading to muscle atrophy and sarcopenia. Specifically,
deconditioning in COPD is associated with reduced oxidative capacity [65], fibre atrophy and reduced
skeletal muscle cross-sectional area [66]. SPRUIT et al. [67] suggest that skeletal muscle weakness during
exacerbations may be because of circulating cytokines. In addition, even at low doses, long-term
corticosteroid use contributes to myopathy in COPD [68]. Conversely, treatment with antioxidants may
improve skeletal muscle endurance, by ameliorating the effects of oxidative stress [69].

In addition to skeletal muscle wasting, inactivity may lead to other systemic sequelae. Studies have shown
that inactivity is an independent risk factor for osteoporosis [70], type 2 diabetes, cardiovascular disease
[71] and depression [72]. There is some evidence suggesting that low-grade systemic inflammation may be
a unifying mechanism. Epidemiological studies have shown that physical inactivity is associated with
higher levels of systemic inflammatory markers [73, 74]. Furthermore, the Women’s Health Study
(>27000 participants) showed that physical activity could reduce cardiovascular risk, mediated mostly by a
reduction in inflammatory markers (C-reactive protein (CRP), fibrinogen and intercellular adhesion
molecule (ICAM)-1) [75]. However, most studies investigating the effect of training interventions did not
show a reduction in circulating inflammation markers [76, 77].
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Accelerated ageing
With a given genetic background, chronic diseases may develop and progress (at different speeds and in
various combinations) in response to common risk factors, such as those listed earlier [78]. Accelerated
ageing as a result of these environmental factors may be a unifying mechanism for this [79]. In support of
this, cellular senescence with telomere shortening, a surrogate marker for accelerated ageing, was reported
in circulating leukocytes in several comorbid diseases such as COPD [80], myocardial infarction, stroke
and diabetes [81].

Furthermore, ageing is characterised by low-grade chronic inflammation (“inflammageing”) and with this,
important age-related perturbations in the gut microbiota have been recognised as a potential source [82].
Interventions directed at the composition of gut microbiota might be important in controlling this
imflammageing process and be another key component of multimorbidity management.

Oxidative stress
Increased oxidative stress in the major mechanism that drives accelerated ageing through its damaging
effect on DNA, activation of mammalian target of rapamycin (mTOR) signalling and shortening of
telomeres. Oxidative stress is implicated in several pathological mechanisms (including NF-κB and
phosphoinositide 3-kinase (PI3K)) in COPD, and these have resulted in targets for potential treatments
[83]. Furthermore, it is likely that oxidative stress is also a mechanism driving multimorbidity in COPD,
with increased levels of serum 8-hydroxy-2′ -deoxyguanosine (a product of DNA damage) in patients with
coronary artery disease [84] and diabetes [85].

Pulmonary components of multimorbidity
Systemic inflammation from the COPD lung
Pulmonary inflammation is a hallmark of COPD pathogenesis [86, 87]. The inflammatory profile is
characterised by increased numbers of innate and adaptive immune cells and cytotoxic mediators within
the airways [88, 89], which have been suggested to “spill over” into the systemic circulation [90]. There is
evidence that systemic inflammation is common in patients with clinically stable COPD [91–93] and is
implicated in several comorbid conditions [94], including accelerated ageing [95]. However, patterns of
inflammation are heterogeneous [96] and quantifying systemic inflammation in COPD is difficult, where
many of the studies use cross-sectional data from small sample sizes and it may not be a persistent
phenomenon [97]. AGUSTÍ et al. [98] showed that although the majority of COPD patients (∼70%)
demonstrate a degree of systemic inflammation (defined as elevated levels of one of CRP, interleukin
(IL)-6, IL-8, fibrinogen, tumour necrosis factor (TNF)-α or leukocytes), only 16% of COPD patients had
persistent inflammation. Importantly, those with persistent inflammation (despite having relatively similar
lung function impairment) had significantly increased mortality and exacerbation frequency. Furthermore,
this persistence of a systemic inflammatory phenotype is linked to atherosclerosis, ischaemic heart disease,
stroke and cardiovascular mortality, independent of COPD [99], and specifically increased systemic TNF-α
has been implicated as a mechanism for cachexia and skeletal muscle wasting in COPD [100].

Understanding the drivers of systemic inflammation in COPD is important, as it is likely to be fundamental
to the pathogenesis of COPD. Studies have shown that systemic inflammation persists despite smoking
cessation [101] and increases during exacerbations [102–104]. In addition, it seems to be an important
determinant for patient outcome, with associations with accelerated decline in lung function [105] and
exacerbations [106], as well as a two- to four-fold risk of cardiovascular disease, diabetes, lung cancer and
pneumonia [107]. Furthermore, systemic inflammation is linked to psychological comorbidity with
evidence it is key to the development of depression [108], anxiety and cognitive impairment [109]. The
origin of systemic inflammation in COPD is much debated and SINDEN and STOCKLEY [90] reviewed the
evidence for pulmonary “overspill” in 2010.

A lack of correlation between inflammatory markers in the sputum and blood of COPD patients has
provided some evidence against the overspill theory [110–113]. In addition, several other drivers to
systemic inflammation are reported including smoking, lung hyperinflation (discussed earlier), tissue
hypoxia, skeletal muscle wasting and bone marrow stimulation [114]. Therefore, the origin of systemic
inflammation in COPD is complex and likely to be multifactorial.

Immune cell priming in the COPD lung
Despite the lack of direct evidence supporting the overspill theory, other studies suggest that immune cell
activation or “priming” occurs within the COPD lung in both stable disease and at exacerbation, leading to
systemic inflammation [115, 116]. Leukocyte priming results in enhanced migratory and cytotoxic
responses [117, 118], which may contribute to systemic inflammation and comorbid disease. Studies have
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shown that cytokine priming of neutrophils occurs in response to cigarette smoke exposure [119, 120].
NOGUERA et al. [116] showed an increase in expression of the endothelial adhesion molecules and
production of reactive oxygen species (ROS) in circulating neutrophils in patients with COPD compared
with smokers with normal lung function. This demonstrates an important disease effect on neutrophil
priming and implicates their role in systemic endothelial dysfunction. Furthermore, monocytes also
accumulate in the lungs of smokers in response to cigarette smoke [121] and it is likely that
smoke-activated macrophages release monocytic chemokines (e.g. monocyte chemoattractant protein-1)
into the peripheral blood [122]. Besides stimulating recruitment of cells to the lungs, in response to
smoking these chemokines can also prime circulating monocytes, which increases adhesion to the
endothelium and provides a possible mechanism for atherosclerosis [123, 124]. Furthermore, TNF-α is
increased in the blood [125, 126] and sputum of COPD patients [127], and increased production of TNF-α
in response to cigarette smoke may contribute to the priming of circulating inflammatory cells [119].

Overall, these experimental data suggest that local cytokine release in the periphery, whether in response to
acute cigarette smoke exposure, or in the context of COPD, prime immune cells to coordinate a systemic
inflammatory response and possible contribute to the burden of multimorbidity.

Although much of the focus has been on the role of macrophage- and neutrophil-driven inflammation in
COPD, the importance of eosinophilic inflammation has been highlighted in several studies, showing that
eosinophilic COPD patients have more frequent exacerbations [128–130], and are more responsive to
corticosteroid treatment [131]. Less is known about their role in comorbid disease, although it has been
demonstrated that eosinophils play a pivotal role in metabolic homeostasis [132, 133], and have been
found to be associated with coronary artery disease [134, 135] and thrombus formation [136]. More
recently, blood eosinophils have been found to correlate with the presence of hypertension in older patients
with COPD [137]. It might not be surprising that in COPD patients, different comorbidities may be
associated with eosinophil increase, where blood eosinophils could be the result of immune cell priming
within the bone marrow.

Pulmonary extracellular vesicles as mediators of local and systemic inflammation
Purposeful, direct intercellular communication is key to inducing and resolving inflammation. Extracellular
vesicles (EVs) are intercellular messengers present in all body fluids, transporting proteins, lipids and RNA
[138]. They are involved in immunomodulation [138, 139], implicated in inflammatory lung disorders,
including COPD [140–142], and may be a universal disseminator of inflammation [143]. EVs can
originate from the endosomal compartment (exosomes) or be shed from the cell surface (microvesicles
(MVs)). The following section reviews how pulmonary EVs support inflammation in the lungs and how
they may exit the lungs and contribute to dissemination of inflammation and therefore multimorbidity.

EVs in the airways
EVs were first identified in the healthy human bronchoalveolar lavage fluid (BALF) in 2003, and found to
express CD86, ICAM-1 and major histocompatibility complex class I and II [144]. Pulmonary EVs are likely
to originate from different cell sources depending on health and disease; however, bronchial epithelial cells
have been suggested as the main source of lung EVs [145]. Epithelial cell injury secondary to cigarette smoke
is known to stimulate release of EVs, which are pro-inflammatory (induce IL-8 and vascular endothelial
growth factor release) [146] and profibrotic (promote fibroblast differentiation) [147]. Furthermore,
epithelial-derived EVs could also have a role in innate defence, whereby when enriched for mucins
(glycoproteins vital for maintaining mucus barriers), EVs can bind to and neutralise influenza virus [148]. In
addition, EVs are released by alveolar macrophages and are implicated in regulation of several inflammatory
processes in response to cigarette smoke and airway pathogens [149–154]. Taken together, these studies
suggest a role for pulmonary EVs in regulating pulmonary inflammation in response to noxious stimuli, and
further work has suggested these may be driven in part by EV shuttling of microRNA [155, 156].

Circulating EVs
Aberrant release of endothelial MVs occurs in lung disease as a consequence of damage the lung capillary
bed [157, 158]. Circulating pulmonary endothelial-derived MVs are increased in smokers with signs of
early emphysema [159]. COPD patients have elevated circulating endothelial-derived MVs, which are
further elevated during exacerbations. These MVs had markers indicating pulmonary capillary origin,
suggesting that their release is associated with pulmonary capillary endothelial damage [160].

Evidence for EVs exiting the lung
Rather than just “overspill” from the lung into the systemic circulation, there is evidence to suggest that
pulmonary EVs undergo targeted release into the circulation as a result of increased pulmonary vascular
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permeability in response to acute and chronic inflammation [161]. This will affect the exchange of EVs
between the blood and the epithelial lining, with the possibility of pulmonary EVs reaching systemic
circulation and potentially distant organs. For example, EVs from pulmonary endothelial cells carry
α1-antitrypsin (A1AT) and may be involved in shuttling A1AT across the alveolar membrane to recipient
epithelial cells [162], possibly to prevent excessive pulmonary inflammation. Furthermore, proteomic
characterisation of BALF exosomes from sarcoid patients showed proteins associated with inflammation,
cellular migration and complement components [163]. In addition, vitamin D-binding protein (a potent
chemoattractant for leukocytes) was significantly increased in both BALF and serum EVs, which may be a
result of pulmonary exosomes exiting into systemic circulation.

EVs, systemic inflammation and comorbidities
EVs are implicated in the pathogenesis of several other inflammatory disorders. Several studies have
demonstrated the presence of pro-inflammatory EVs in rheumatoid arthritis [164], multiple sclerosis (MS)
[165] and inflammatory bowel disease [166]. Specifically, pro-inflammatory EVs have been identified both
in the synovial fluid of patients with rheumatoid arthritis where active joint inflammation occurs and in the
circulation [164, 167, 168], suggesting a role for EVs in mediating systemic inflammation. MS patients
have increased levels of circulating platelet MVs, which correlate with disease subtype and increase during
active inflammation [169]. In addition, EVs from MS patients have been implicated in disease progression
via endothelial barrier disruption [165], degradation of the blood–brain barrier and promotion of neural
inflammation [170].

Further to EVs driving systemic inflammation and progression of inflammatory disease, several studies
have suggested a role for EVs, particularly endothelial-derived microparticles, in vascular comorbidities
[171]. Increased levels of endothelial microparticles have been found in patients with hypertension [172],
atrial fibrillation [173], obesity [174] and type 2 diabetes [175]. These microparticles can promote clotting,
oxidative stress and endothelial dysfunction, all contributing to the pathogenesis of disease. Therefore, by
targeting the production of these microparticles or altering their structure, several risk factors for
cardiovascular disease could be modified simultaneously, thereby treating comorbidity in these patients
using a unified therapy.

Treatment approaches for multimorbidity in COPD
Management of patients with multimorbidity is now the most important task facing the medical
community and presents a fundamental challenge to the single-disease focus that pervades medicine [176].
Self-management approaches to improve knowledge, confidence and skills of patients may prove an
important approach in these patients [177, 178]. Recent guidelines suggest that management of
multimorbidity should involve personalised assessment and tailored treatment plans. The aim of treatment
should be to improve length and quality of life by consolidating management, whereby treatment based on
single-disease guidelines is no longer an acceptable approach [179]. Current and future treatment strategies
are summarised in table 2 and discussed in detail in the next section.

Current treatment strategies
Smoking cessation
Smoking is a key risk factor for multimorbidity in COPD [54]. Consequently, smoking cessation may
represent a key target for primary and/or secondary prevention of multimorbidity. Effective tobacco control
policies (i.e. smoking ban legislation) have been shown to reduce smoking, with rapid improvement in the
risks of chronic diseases such as cardiovascular disease and lung cancer [211]. Therefore, although
difficult to achieve, smoking cessation should remain an important part of multimorbidity management.

Exercise and pulmonary rehabilitation
Pulmonary rehabilitation has been shown to reduce breathlessness, increase exercise capacity and improve
quality of life in COPD patients [212, 213]. Physical activity and regular exercise are both recommended
and are beneficial not only for patients with COPD, but also for patients with cardiovascular disease,
musculoskeletal disease, obesity, diabetes mellitus and most other chronic medical conditions [182, 214].
Furthermore, a systematic review and meta-analysis including six randomised controlled trials showed that
comprehensive pulmonary rehabilitation programmes, (including exercise training, education and
psychosocial support) can effectively reduce anxiety and depression [181]. Although traditionally used to
bronchospasm, there is evidence to suggest that various β2-agonists increase skeletal muscle mass and
strength and prevent fatigue [215]. This suggests that optimal use of inhaled therapy could minimise
symptoms and improve compliance with exercise programmes.
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Inhaled corticosteroids
Evidence suggests that targeting treatment towards suppressing pulmonary and/or systemic inflammation
may benefit multimorbidity in COPD. Although inhaled corticosteroids are a mainstay of COPD therapy,
studies show that they may fail to suppress airway inflammation in the COPD [216, 217], and may impair
immune cell function in response to common pathogens [218]. Despite this, inhaled corticosteroids have
been shown to reduce systemic inflammation [86] and cardiovascular mortality [185]. However,
prospective work showed minimal benefit of inhaled corticosteroids on all-cause mortality [219] and no
reduction in systemic markers of inflammation [220], suggesting an unlikely beneficial effect on
multimorbidity.

TABLE 2 Summary of current and future treatment strategies for multimorbidity in COPD

Pulmonary effects Multimorbid effects

Current strategies
Smoking cessation Reduction in airway inflammation

Improves respiratory symptoms and bronchial
hyperresponsiveness

Prevents accelerated lung decline

Reduction of risk of cardiovascular disease and lung
cancer [180]

Exercise and pulmonary
rehabilitation

Delays dynamic hyperinflation
Reduces functional breathlessness

Increases exercise capacity
Improves quality of life

Reduces anxiety and depression [181]
Increases BMI, skeletal muscle mass and improves

osteoporosis [182]
Inhaled corticosteroids Limited reduction in airway inflammation: decrease in

CD8+ T-lymphocytes in airway biopsies [183]
Reduction in exacerbations, especially in eosinophilic

COPD [131]
Increased risk of pneumonia, especially in severe disease

[184]

Possible reduction in cardiovascular mortality [185]
Possible reduction in systemic inflammation (CRP,

TNF-α) [86]
Improvement in quality of life (in combination with

bronchodilator)

Theophylline Possible increased inspiratory muscle strength [186]
Reduction in neutrophilic inflammation [187]

Not known

PDE4 inhibitors, e.g.
roflumilast

Reduction in exacerbations and improvement in lung
function in patients with chronic bronchitis, FEV1 <50%

and history of frequent exacerbations

Prevention of bone loss and increase in skeletal
muscle mass (in a murine model) [188]

Cardiovascular-targeted
treatments
Statins May reduce exacerbations [189] Reduction in cardiovascular risk [190]

Reduction in oxidative stress and inflammation [191]
ACE inhibitors/ARB Reduction in exacerbations [192]

Decrease in hyperinflation [193]
May improve survival (in those with cardiovascular

risk)
β-Blockers Reduction in exacerbations [194] Reduction in mortality after myocardial infarction

[195] and in heart failure [196]
Reduction in oxidative stress [197]
Improved exercise capacity [198]

Future strategies
Metformin (targeting
PI3K-AKT-mTOR pathway)

May improve respiratory symptoms and reduce
hospitalisations [199]

Possible reduction in mortality in COPD patients with
diabetes [200]

Resveratrol (plant-based
antioxidant)

Anti-inflammatory in lung epithelial cells [201] Possible cardioprotective effects [202]

Losmapimod (p38 MAPK
inhibitor)

No effect on respiratory symptoms or lung function, but
a trend towards reduction in exacerbations [203]

Not yet determined; possible effect on arterial
inflammation

NF-κB inhibitors, e.g. IκB
kinase inhibitors

Not yet determined; possible effects on exacerbations
given role in activating inflammatory signalling in the

COPD lung [204]

Not yet determined; possible effects on skeletal
muscle wasting [205], cardiovascular disease, lung

cancer, osteoporosis and diabetes [206]
Antioxidants, e.g. Nrf2
activators, NOX4
inhibitors

Not yet determined; possible reduction in inflammation
and reversal of corticosteroid resistance

Not yet determined; issues with side-effect profile

Mesenchymal stem cell EVs Not yet determined; initial trials failed to show benefit
[207]

Not yet determined; possibly neuroprotective [208],
cardioprotective [209] and anti-inflammatory [210]

PDE4: phosphodiesterase-4; ACE: angiotensin-converting enzyme; ARB: angiotensin receptor blockers; PI3K: phosphatidylinositol 3-kinase; AKT: also
known as protein kinase B; mTOR: mechanistic target of rapamycin; MAPK: p38 mitogen-activated protein kinase; IκB: inhibitor of NF-κB; Nrf2:
nuclear factor erythroid 2-related factor 2; NOX: NADPH oxidase; EVs: extracellular vesicles; BMI: body mass index; CRP: C-reactive protein; TNF:
tumour necrosis factor; FEV1: forced expiratory volume in 1 s.
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Targeting cardiovascular comorbidity in COPD
Observational studies suggest that treatment of cardiovascular disease may have some unexpected benefit
on COPD. For example, statins reduce cholesterol and thus cardiovascular risk, but also have pleiotropic
effects involving a reduction in oxidative stress and inflammation [221, 222]. Observational studies have
shown that statins may reduce exacerbations [189] and cardiovascular mortality in patients with COPD
[190]. However, a subsequent systematic review found although statins were associated with a significant
reduction in inflammation (CRP and IL-6), this did not translate into improvement in exacerbations,
mortality, functional capacity, quality of life, or lung function [191].

Angiotensin-converting enzyme (ACE) inhibitors are widely used to treat hypertension and heart failure,
and have been shown to reduce exacerbations and mortality in COPD patients [192]. Both activation of
renin–angiotensin system [223, 224] and polymorphisms of the ACE gene have been linked to skeletal
muscle wasting in COPD [225]. However, although angiotensin II receptor antagonists reduced
hyperinflation in COPD, they had no effect on respiratory or skeletal muscle strength [193]. Furthermore,
CURTIS et al. [226] showed that ACE inhibitors in combination with pulmonary rehabilitation actually
reduced exercise capacity in COPD patients. Therefore, current evidence suggests using this therapy in
COPD only in the context of coexisting hypertension or heart failure.

Finally, β-blockers reduce mortality in patients after myocardial infarction [195] and those with heart
failure [196]. Despite evidence showing that β-blockers benefit patients with COPD, with reductions in
exacerbations and mortality [194], prescribers are often reluctant to use them due to concerns about
precipitating bronchospasm [227]. Importantly, similar to statins, cardioselective β-blockers such as
carvedilol may exert pleiotropic effects including reducing oxidative stress [197] and skeletal muscle
adaptation, resulting in improved exercise capacity [198]. However, the recent BLOCK trial by DRANSFIELD

et al. [228] showed that patients with moderate or severe COPD did not benefit from β-blocker
(metoprolol) therapy. In fact, hospitalisation for COPD exacerbation was more common in the treatment
group. The trial population did not have any overt cardiovascular disease and therefore no therapeutic
indication for treatment with a β-blocker. Physicians should continue to use cardioselective β-blockers in
patients with COPD who have coexisting cardiovascular disease [229].

Future treatment strategies for multimorbidity in COPD
Anti-ageing molecules
Accelerated ageing is implicated in both multimorbidity and COPD progression and a better understanding
of senescence pathways has identified several potential therapeutic targets [230]. The PI3K–protein kinase
B (AKT)–mTOR pathway plays a key role in cellular senescence and inhibition of autophagy. Metformin
is widely used to treat type 2 diabetes and indirectly inhibits AMP-activated protein kinase, resulting in
inhibition of mTOR and extension of lifespan in mice, probably through increasing nuclear factor erythroid
2-related factor 2 (Nrf2)-induced antioxidant gene expression [231, 232]. Observational data have shown
reduced mortality in patients with COPD and diabetes taking metformin compared to non-metformin users
[200]. However, earlier evidence showed that metformin did not reduce levels of inflammation or improve
clinical outcomes in patients admitted with severe COPD exacerbation [233].

PI3K is upregulated in the peripheral lung of COPD and is involved in corticosteroid resistance [234].
Low-dose theophylline may increase sensitivity to inhaled corticosteroids in patients with COPD, by
inhibiting oxidant-activated PI3K and restoring histone deacetylase 2 activity (a known anti-ageing
molecule) [234]. However, clinical trials of low-dose theophylline have so far had disappointing results
[235]. Although these two current therapies have failed to show significant benefits, a newer molecule,
resveratrol (a plant-based polyphenol found in grapes, peanuts and red wine), has been shown to extend
lifespan by activating Sirtuin-1 [236]. Reports suggest that resveratrol is a powerful antioxidant [237], a
PI3K inhibitor [238] and it has been shown to have anti-inflammatory effects in lung epithelial cells [201].
Recent clinical studies in non-COPD patients show improved mitochondrial oxidative metabolism after
resveratrol treatment, which could be beneficial for both lung and skeletal muscle impairment in COPD.
Moreover, pre-clinical studies suggest that it has cardioprotective effects [202]. Therefore, future treatments
for multimorbidity may include novel targets that reduce cellular senescence pathways, thereby reducing
accelerated ageing associated with COPD and other comorbid disease.

Targeting inflammation and oxidative stress
Phosphodiesterase (PDE)4 inhibitors are the most developed of the novel anti-inflammatory treatments for
COPD. Roflumilast, a selective PDE4 inhibitor, is currently used as an anti-inflammatory treatment in
severe COPD to prevent exacerbations in the context of chronic bronchitis. However, the drug’s narrow
therapeutic window has limited its use [239]. PDE4 inhibition appears to mediate the anti-inflammatory
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effects of theophylline, and selective PDE4 inhibitors have a wide spectrum of anti-inflammatory effects in
the lung and are more effective against neutrophilic inflammation than corticosteroids [240, 241].
Furthermore, in rats a PDE4 inhibitor prevented bone loss and increased skeletal muscle mass, suggesting
that PDE4 inhibitors have the potential to prevent osteoporosis and skeletal muscle wasting in COPD [188].

Oxidative stress is present in the lungs of COPD patients and is a major contributor to accelerated ageing
and several COPD comorbidities, including atherosclerosis and diabetes [83]. Existing antioxidants, such
as N-acetylcysteine and carbocisteine, have proved disappointing in reducing progression of lung function
and exacerbations in COPD [242]. The transcription factor Nrf2 regulates many antioxidant genes and is
impaired in COPD [243]. However, current Nrf2 activators (e.g. sulforaphane and bardoxolone methyl) are
poorly selective, leading to toxicity [244]. ROS may be generated by NADPH oxidases (NOX) in activated
inflammatory cells in the airways, and selective NOX4 inhibitors are now in clinical development for
various diseases [245]. Furthermore, mitochondria are a major source of ROS in COPD, and selective
mitochondria-targeted antioxidants (e.g. mitoquinone) are now in clinical studies [246].

Multiple kinases are involved in driving lung inflammation and remodelling in COPD [247], and kinase
inhibitors have trialled in the treatment of COPD [248]. Although promising in animal studies, the oral p38
mitogen-activated protein kinase inhibitor (losmapimod) had no significant effects on symptoms or lung
function, but a trend toward reduced exacerbations [203]. Furthermore, a recent phase II trial showed that
losmapimod had no effect on arterial inflammation and endothelial function, and so does not support
kinase inhibitors as an effective treatment for cardiovascular morbidity COPD [249].

Finally, NF-κB regulates the expression of inflammatory cytokines and chemokines (TNF-α and matrix
metalloproteinase-9) and is activated in macrophages and epithelial cells of COPD patients, particularly
during exacerbations [204]. NF-κB activation is implicated in mediating systemic inflammation and may
be involved in several COPD comorbid diseases including skeletal muscle wasting [205], cardiovascular
disease, lung cancer, osteoporosis and diabetes [206]. Inhibitors of NF-κB kinases (IKKs) are essential in
NF-κB signalling, and several small-molecule inhibitors of IKK are in development as a promising
treatment for COPD [250]. However, there are safety concerns regarding profound immunosuppression and
impaired host defences as a consequence of targeting ubiquitously expressed NF-κB. Therefore, there are
currently no human trials of these molecules.

Targeted therapy with mesenchymal stem cell derived EVs
Stem cell exhaustion has been implicated in ageing [251] and several chronic diseases including COPD
[252]. Mesenchymal stem cells (MSCs) are a proposed regenerative therapy, given their ability to
differentiate into a variety of cell types and their ability to migrate and engraft into target tissues [253].
However, more recently their biological effects have been attributed to their secreted EVs which have been
shown to be neuroprotective [208], cardioprotective [209] and anti-inflammatory [210]. Although
pre-clinical studies have demonstrated immunomodulatory and regenerative potential of MSC-based
therapy, clinical studies have failed to demonstrate a proven benefit in COPD [207]. Furthermore, work
needs to be done to tackle issues in production, safety, characterisation and delivery.

Conclusions
COPD is a multisystem disease characterised by continued poor outcomes despite current therapeutic
strategies targeting the lung. While COPD is associated with both pulmonary and systemic inflammation
driven by local responses to toxic stimuli, accelerated ageing, inactivity and other lifestyle factors, the
synergistic mechanisms by which multimorbidity is driven remains incompletely described. Understanding
this complexity is key to discovering the molecular mechanisms driving inflammation and in doing so will
lead to new, holistic therapeutic approaches, treating the patient and not the single disease.
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